首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method was standardized for the dissolution of hair samples and analysis was carried out by inductively coupled plasma atomic emission spectrometry (ICP-AES). Hair samples were brought into solution by using a mixture of nitric acid and hydrogen peroxide. Various parameters that influence the sample preparation, namely temperature, digestion time and ratio of acid mixture were studied and standardized. The optimized method has been employed to digest standard reference materials and hair samples of residents of India, collected from different age groups and sex, and analyzed for Fe, Co, Ni, Mn, Zn, Cu, Cd and Pb. The values agree for most of the metals with the data reported for human hair samples of residents of India. The NIES CRM Human Hair No. 5 and IAEA Reference Hair HH-1 certified reference materials were used in order to verify the accuracy of the method and the results were in excellent agreement with the certified values.  相似文献   

2.
3.
This paper reports on a novel method for the determination of oxygen in silver halides using inductively coupled plasma-atomic emission spectrometry (ICP-AES). A heating system was designed and set up to heat the sample and to release oxygen which was then sent into the plasma by the argon carrier gas. A demountable extended ICP torch was assembled to prevent air from entering the analytical region of the ICP. The nonresonance near infrared atomic oxygen line, O(I) 777.19 nm, was used for the determination of oxygen. The detection limit of the method was 1.6 μg of oxygen. Pure oxygen was used for calibration. The method had a precision of 4.74% RSD for about 15 μg of oxygen in samples.  相似文献   

4.
Nickel, iron, and copper were determined in margarine samples by using emulsification followed by inductively coupled plasma-atomic emission spectroscopy. Sample treatment and instrumental conditions were optimized, and the results were compared with those obtained by a pseudodigestion method in order to evaluate the compatibility of both methodologies. The optimum amount of margarine in the emulsion was 35% when the surfactant Tween 80 was added as the emulsifier. Copper was below the detection limits of both methodologies, i.e., digestion and emulsion; iron and nickel concentrations found by both methodologies were similar. The detection limits of the emulsion method were 0.002, 0.015, and 0.092 mg/kg for copper, iron, and nickel, respectively. A benefit of the emulsion method is that laborious and lengthy sample digestion procedures are avoided. In addition, accurate and precise results are obtained. Recoveries with the emulsion method ranged from 101 to 104%, with relative standard deviations of < or = 6%.  相似文献   

5.
Erbium which is used in the composition of heavy metal fluoride optical fibres was determined in preforms of these materials by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). The new analytical procedure developed comprises: solid sample dissolution, via an alkaline fusion with sodium carbonate, and acid leaching with dilute hydrochloric acid, and measurements of emission intensities of 337.276 nm. This method has a detection limit of 31 ng/ml and a reproducibility of 0.90% r.s.d.  相似文献   

6.
Regional variations in arterial concentrations of Ca, Mg and Fe may influence susceptibility to atherosclerosis. However, investigation of such hypotheses requires the availability of a sensitive, reliable method for the determination of elements in small arterial samples. These biologically important elements are determined in rabbit arteries by inductively coupled plasma atomic emission spectrometry (ICP-AES). Arterial samples (aorta and iliac arteries) are collected from 4- and 6- to 7-month-old rabbits fed rabbit chow. Closed-vessel microwave acid digestion is used to prepare the samples. The accuracy of the method is tested with a NIST bovine liver (1577b) standard reference material, and the amount of each metal found is within the reported uncertainty in the certified concentration. Also, the recovery from artery samples spiked with 0.5 μg of each metal is nearly 100% (96-105% Ca, 93-105% Fe, and 92-104% Mg). The simultaneous multielement detection of Ca, Fe and Mg at levels more than 1000-fold higher than the detection limit, in arterial samples weighing as little as 5 mg, suggests that this method may be applicable to very small clinical samples or arterial samples from very small animals.  相似文献   

7.
Rosi Ketrin Katarina 《Talanta》2009,78(3):1043-990
On-line preconcentration and determination of transition and rare-earth metals in water samples was performed using a Multi-Auto-Pret system coupled with inductively coupled plasma-atomic emission spectrometry (ICP-AES). The Multi-Auto-Pret AES system proposed here consists of three Auto-Pret systems with mini-columns that can be used for the preconcentration of trace metals sequentially or simultaneously, and can reduce analysis time to one-third and running cost of argon gas and labor. A newly synthesized chelating resin, ethylenediamine-N,N,N′-triacetate-type chitosan (EDTriA-type chitosan), was employed in the Multi-Auto-Pret system for the collection of trace metals prior to their measurement by ICP-AES. The proposed resin showed very good adsorption ability for transition and rare-earth metal ions without any interference from alkali and alkaline-earth metal ions in an acidic media. For the best result, pH 5 was adopted for the collection of metal ions. Only 5 mL of samples could be used for the determination of transition metals, while 20 mL of samples was necessary for the determination of rare-earth metals. Metal ions adsorbed on the resin were eluted using 1.5 M nitric acid, and were measured by ICP-AES. The proposed method was evaluated by the analysis of SLRS-4 river water reference materials for trace metals. Good agreement with certified and reference values was obtained for most of the metals examined; it indicates that the proposed method using the newly synthesized resin could be favorably used for the determination of transition and rare-earth metals in water samples by ICP-AES.  相似文献   

8.
In bottom-viewed inductively coupled plasma-atomic emission spectrometry (BV-ICP-AES), emission from the central channel of the plasma is measured axially from the bottom of the plasma. A straight quartz tube was used as a hollow light pipe (HLP) to collect plasma emission in this study. The HLP also serves as an injector for aerosols transport and injection into the ICP. The optical characteristics of HLPs with the original reflective surface and roughened outer surface are reported. The roughened HLP is effective in rejecting light beams that are not in line with the HLP. The transmission efficiency of the HLP, however, is high (> 70%) for light beams from a source that has the same dimension as the entrance of the HLP and is flush with the HLP. The HLP is effective in rejecting background emission from the core of the plasma that encircles the plasma central channel and yet efficient in light collection from the central channel of the plasma.  相似文献   

9.
Korn M  Korn MG  Reis BF  de Oliveira E 《Talanta》1994,41(12):2043-2047
Determination of Cr(VI) and Cr(III) in water samples by inductively coupled argon plasma-atomic emission spectrometry (ICP-AES) was performed indirectly employing an on-line system. For this purpose a column with copper shavings was used to reduce Cr(VI) to Cr(III) in acidic media, generating Cu(II) ions in the flow path. This process permitted the evaluation of concentrations in the range of 1–50 mg/l. The protocol allowed a throughput of 100 samples per hour with 10% precision in the concentration  相似文献   

10.
真空精炼是目前镁金属提纯的重要工艺,工艺原料及真空精炼提纯镁金属过程残留物中Fe、Cu、Ni含量的准确测定对工艺参数的优化及调整具有重要的指导作用。传统测定方法中以邻二氮杂菲分光光度法、新亚铜灵分光光度法、丁二酮肟分光光度法测定三种元素含量,结果准确,但操作繁琐,周期较长,难以满足工业生产中高效、快速测定的需要,且方法中所需的有机萃取剂对环境污染较大。本研究选择电感耦合等离子体发射光谱法(ICP-AES)测定真空蒸馏精炼镁合金物料中Fe、Cu、Ni,系统探究了溶解酸、溶解温度、溶解时间对物料溶解和测定的影响,选择了(1+1)盐酸和过氧化氢溶解体系,200℃加热条件下反应20min为最佳消解镁合金原料条件;选择了王水溶解体系,200℃加热条件下反应25min为真空精炼残留物最佳溶解条件。并探讨了ICP-AES测定过程中各元素的检出限和测定下限以及共存元素的干扰情况,建立了ICP-AES测定真空精炼提纯镁合金物料的方法。方法测定结果的相对标准偏差(RSD,n=11)为Fe 5.89%~11.49%、Cu 2.58%~11.78%、Ni 3.36%~11.47%;各元素加标回收率为;Fe 96.35%~102%、Cu 101.3%~108%、Ni 103%~104.7%;按照实验方法测定镁合金原料、真空精炼残留物中的铁、铜、镍,并与国标方法测定结果进行对比,结果相一致。本研究实现了ICP-AES法快速、准确测定真空蒸馏精炼镁合金物料中铁、铜、镍含量,对及时、高效、准确评估真空精炼提纯镁工艺及产品具有重要意义。  相似文献   

11.
A flow injection analysis system for on-line preconcentration and simultaneous determination of Bi3+, Cd2+, Co2+, Cu2+, Fe3+, Ni2+, Pb2+ and Zn2+ in aqueous samples by inductively coupled plasma (ICP)-atomic emission spectrometry with a charge coupled detector is described. The preconcentration of analytes is accomplished by retention of their chelates with sodium diethyldithiocarbamate in aqueous solution on a solid phase containing octadecyl silica in a minicolumn. Methanol, as eluent, is introduced into the conventional nebulizer of the ICP instrument. The effects of different parameters, including preconcentration flow rate (equal to sample flow rate (SR)), eluent flow rate (ER), weight of solid phase (W) and eluent loop volume (EV), were optimized by the super-modified simplex method. The optimum conditions were evaluated to be SR 7.2 ml min−1, ER 3.5 ml min−1, W of 100 mg and EV of 0.8 ml. An enrichment factor of 312.5 for each analyte was obtained. The detection limits of the proposed method for Bi3+, Cd2+, Co2+, Cu2+, Fe3+, Ni2+, Pb2+ and Zn2+ were evaluated as 1.3, 1.0, 0.8, 0.3, 14.7, 0.5, 5.5 and 0.1 ng l−1, respectively. The effect of several metal ions on percent recovery was also studied. The method was applied to the recovery of these heavy metals from real matrices and to the simultaneous determination of these cations in different water samples.  相似文献   

12.
13.
In the present study a cloud point extraction process using mixed micelle of the cationic surfactant cetyl-pyridinium chloride (CPC) and non-ionic surfactant Triton X-114 for extraction of beryllium from aqueous solutions is developed. The extraction of analyte from aqueous samples was performed in the presence of 1,8-dihydroxyanthrone as chelating agent in buffer media of pH 9.5. After phase separation, the surfactant-rich phase was diluted with 0.4 mL of a 60:40 methanol-water mixture containing 0.03 mL HNO3. Then, the enriched analyte in the surfactant-rich phase was determined by inductively coupled plasma-atomic emission spectrometry (ICP-AES). The different variables affecting the complexation and extraction conditions were optimized. Under the optimum conditions (i.e. 1.6 × 10−4 mol L−1 1,8-dihydroxyanthrone, 1.2 × 10−4 mol L−1 CPC, 0.15% (v/v) Triton X-114, 50 °C equilibrium temperature) the calibration graph was linear in the range of 0.006-80 ng mL−1 with detection limit of 0.001 ng mL−1 and the precision (R.S.D.%) for five replicate determinations at 18 ng mL−1 of Be(II) was better than 2.9%. In this manner the preconcentration and enrichment factors were 16.7 and 24.8, respectively. Under the presence of foreign ions no significant interference was observed. Finally, the proposed method was successfully utilized for the determination of this cation in water samples.  相似文献   

14.
Deng B  Li X  Zhu P  Xu X  Xu Q  Kang Y 《Electrophoresis》2008,29(7):1534-1539
A new method for speciation analysis of magnesium species and quantification of free magnesium concentrations in rat plasma was developed by on-line coupling of CE with inductively coupled plasma-atomic emission spectrometry (ICP-AES). Baseline separation of seven magnesium species was achieved by using a 120 cm (100 microm internal diameter) fused-silica capillary, a 20 kV separation voltage and a solution of 50 mmol/L NaAc-HAc (pH 5.5) as electrolyte buffer. CE-ICP-AES analysis of a rat plasma sample showed the presence of seven magnesium species, one of which was identified as free Mg2+ ion by spiking a Mg2+ standard; the migration time of the Mg2+ peak in the standard and the spiked sample matched with each other. One protein-bound magnesium species in rat plasma is associated with albumin, and the other three species are combined with globulin. The concentration of free magnesium in the plasma was 14.0 mg/L. The other six magnesium species were estimated to be 4-15 mg/L. RSDs of migration time and peak area for the magnesium species from ten replicates were less than 5%. The developed method was also applied to speciation analysis of magnesium species in spiked plasma samples. The recoveries of the free magnesium species in four samples ranged from 95.8 to 103.8%.  相似文献   

15.
As many elements emit line-rich spectra in ICP-AES, the role of the resolution of the dispersive system has been considered as crucial not only to minimize spectral interferences but also to improve signal-to-background ratios. Resolution is mainly based on the line width measured at half of the peak intensity. Because of the availability of modern gratings, the practical resolution is no longer limited by the diffraction patterns produced by the grating, but is mainly bandpass and optical aberration limited. High resolutions of 5 pm may be obtained in the UV, which has to be compared with the physical line widths in the range 1–6 pm. However, such a high resolution cannot be achieved in the visible region because it is no longer possible to use a high line number for conventional gratings and high diffraction orders for echelle gratings. Moreover, the resolution concept does not consider the line wings, which are of concern for background correction. It is then suggested a measurement of the line profile at 1% of the peak intensity and a comparison with that measured at 50%. Because of the current possibility to have acquisition of the entire, or at least large portions of the UV-visible spectra, wavelength reproducibility may become the most important parameter to facilitate data processing such as spectra addition and subtraction, filtering, deconvolution and line correlation.  相似文献   

16.
17.
A single-laboratory validation (SLV) and a ring trial (RT) were undertaken to determine nine nutritional elements in food products by inductively coupled plasma-optical emission spectrometry in order to modernize AOAC Official Method 984.27. The improvements involved extension of the scope to all food matrixes (including infant formula), optimized microwave digestion, selected analytical lines, internal standardization, and ion buffering. Simultaneous determination of nine elements (calcium, copper, iron, potassium, magnesium, manganese, sodium, phosphorus, and zinc) was made in food products. Sample digestion was performed through wet digestion of food samples by microwave technology with either closed- or open-vessel systems. Validation was performed to characterize the method for selectivity, sensitivity, linearity, accuracy, precision, recovery, ruggedness, and uncertainty. The robustness and efficiency of this method was proven through a successful RT using experienced independent food industry laboratories. Performance characteristics are reported for 13 certified and in-house reference materials, populating the AOAC triangle food sectors, which fulfilled AOAC criteria and recommendations for accuracy (trueness, recovery, and z-scores) and precision (repeatability and reproducibility RSD, and HorRat values) regarding SLVs and RTs. This multielemental method is cost-efficient, time-saving, accurate, and fit-for-purpose according to ISO 17025 Norm and AOAC acceptability criteria, and is proposed as an extended updated version of AOAC Official Method 984.27 for fortified food products, including infant formula.  相似文献   

18.
Volatile species of Ni were generated by merging acidified aqueous samples and sodium tetrahydroborate(III) in a continuous flow system. The gaseous analyte was subsequently introduced via a stream of Ar carrier into the inlet tube of the plasma torch. Inductively coupled plasma atomic emission spectrometry (ICP-AES) was used for detection. The operating conditions (chemical and physical parameters) and the concentrations of different acids were evaluated for the efficient generation of Ni vapor. The detection limit (3 sigma(blank)) was 1.8 ng mL(-1). The precision (RSD) of the determination was 4.2% at a level of 500 ng mL(-1) and 7.3% for 20 ng mL(-1) (n=10). The efficiency of the generation process was estimated to be 51%. The possible interfering effect of transition metals (Cd, Co, Cu, Cr, Fe, Mn, Zn), hydride forming elements (As, Ge, Pb, Sb, Se, Sn, Te), and Hg on Ni signal was examined. This study has demonstrated that Ni vapor generation is markedly free of interferences.  相似文献   

19.
Summary An optimisation of the ICP-AES determination of Fe, Cu and Zn in tinned mussels has been carried out. The optimum conditions for the radio frequency power, peristaltic pump flow, plasma gas flow, nebuliser gas pressure, auxiliary gas flow and observation height above load coil were determined manually for each element, since the Simplex method was less adequate. Scans were carried out with the aim of finding the most sensitive spectral lines, whose intensity did not always coincide with literature data. Limits of detection, linearity, precision, and accuracy were also investigated. The possible spectral interferences due to Na, K, Ca, Mg, P, I and nitric acid were studied from three different points of view and the results did not agree. The influence of the matrix on the determination of the above elements in tinned food from the Galician Rias (in the south coast of Galicia) was also studied. The results obtained were comparable to those obtained by AAS.  相似文献   

20.
A laboratory-built spray chamber featuring aerosol collection at the centre of the chamber by means of a funnel is described and compared with a commercially available, dual tube chamber. The influence of some chamber design parameters on the emission signal intensity and stability, the nebulizer efficiency and chamber clean-out time is studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号