首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
A simple, selective and stable biosensor with the enzymatic reactor based on choline oxidase (ChOx) was developed and applied for the determination of choline (Ch) in flow injection analysis with amperometric detection. The enzyme ChOx was covalently immobilized with glutaraldehyde to mesoporous silica powder (SBA‐15) previously covered by NH2‐groups. This powder was found as an optimal filling of the reactor. The detection of Ch is based on amperometric monitoring of consumed oxygen during the enzymatic reaction, which is directly proportional to Ch concentration. Two arrangements of an electrolytic cell in FIA, namely wall‐jet cell with working silver solid amalgam electrode covered by mercury film and flow‐through cell with tubular detector of polished silver solid amalgam were compared. The experimental parameters affecting the sensitivity and stability of the biosensor (i. e. pH of the carrier solution, volume of reactor, amount of the immobilized enzyme, the detection potential, flow rate, etc.) were optimized. Under the optimized conditions, the limit of detection was found to be 9.0×10?6 mol L?1. The Michaelis‐Menten constant for covalently immobilized ChOx on SBA‐15 was calculated. The proposed amperometric biosensor with the developed ChOx‐based reactor exhibits good repeatability, reproducibility, long‐term stability, and reusability. Its efficiency has been confirmed by the successful application for the determination of Ch in two commercial pharmaceuticals.  相似文献   

2.
《Analytical letters》2012,45(8):1317-1331
Abstract

Pesticides as paraoxon and aldicarb have been determined with an amperometric hydrogen peroxide based choline sensor. These pesticides inhibit the enzyme acetylcholinesterase which in presence of its substrate, acetylcholine, produces choline. When these pesticides are in presence of acetylcholinesterase, the activity of this enzyme decreases; this causes a decrease of choline production which is monitored by a choline sensor and correlated to the concentration of pesticide in solution. Two different procedures were followed: one with both the enzymes acetylcholinesterase and choline oxidase immobilized, the second one with the acetylcholinesterase in solution and the choline oxidase immobilized. Parameters as pH, buffer, enzyme concentration, substrate concentration and reaction and incubation times were optimized. Results showed that these compounds can be detected in the range 10 – 100 ppb. The use of the enzyme in solution gave the best results with a detection limit of 2 ppb pesticide.  相似文献   

3.
《Analytical letters》2012,45(7):525-540
Abstract

A sensitive method for the rapid determination of activities of soluble or immobilized enzymes, based on the electrochemical detection of hydrogen peroxide is described. Kinetic studies (Vmax and KM determinations) can be performed for all H2O2 generating enzymes (i.e. most of the oxidases) using an amperometric probe with a platinum anode at a fixed potential.

When associated with an immobilized glucose oxidase membrane, this sensor constitutes a glucose electrode and the activity of any hydrolase which releases glucose can be measured. There is no need for other auxiliary enzymes and no preincubation step is required. The possibility to carry out continuous analysis constitutes the main advantage of the described method.  相似文献   

4.
《Analytical letters》2012,45(5):1145-1158
Abstract

The use of covalently bound mushroom polyphenol oxidase (tyrosinase, EC 1.10.3.1) for the determination of μg/mL and ng/mL concentrations of phenol in water samples with use of continuous-flow sample/reagent processing is described. Immobilization on controlled-pore glass, CPG, was accomplished via diazo coupling. Detection was effected with hexacyanoferrate(II) as a redox mediator and was either spectrophotometric or amperometric. the immobilized enzyme preparation was part of an open tubular reactor (CPG thermally embedded on Tygon tubing). the redox mediator was used either in solution or as part of a thin-layer cell and immobilized on poly(4-vinylpyridine) incorporated in a carbon paste electrode. Different spectrophotometric and amperometric strategies are compared and the method is applied to the determination of phenol in water samples and quality control standards.  相似文献   

5.
A practical biosensor system has been developed for the determination of urinary glucose using a flow-injection analysis (FIA) amperometric detector and ion-exchange chromatography. Glucose oxidase was immobilized onto porous aminopropyl glass beads via glutaraldehyde activation to form an immobilized enzyme column. On the basis of its negative charge at pH 5.5, endogenous urate in urine samples was effectively retained by an upstream anion-exchange resin column. The biosensor system possessed a sensitivity of 160 ±2.4 RU μM-1 (RU or relative unit is defined as 2.86 μV at the detection output) for glucose with a minimum detection level of 10 μM. When applied for the determination of urinary glucose, the result obtained compared very well with that of the widely accepted hexokinase assay. The immobilized glucose oxidase could be reused for more than 1000 repeated analyses without losing its original activity. The reuse of the acetate anion-exchange column before replacement would be about 25–30 analyses. Acetaminophen and ascorbic acid were also effectively adsorbed by the acetate anion exchanger. The introduction of this type of anion exchanger thus greatly improved the selectivity of the FIA biosensor system and fostered its applicability for the determination of glucose in urine samples.  相似文献   

6.
《Analytical letters》2012,45(13):2455-2470
Abstract

An amperometric choline biosensor was constructed using choline oxidase immobilized on poly(2-hydroxyethylmethacrylate) membranes obtained by gamma radiation-induced polymerization at low temperature. The measurements were carried out by Clark-type oxygen or hydrogen peroxide electrodes. Calibration curves were linear in the 10-200 umol · 1?1 range for the oxygen probe and 5-250 umol · 1?1 for the H2O2-based probe. Temperature and pH effects on the activity of immobilized enzyme are described and the response characteristics of the sensor are summarized. The immobilized enzyme membranes stored in glycine buffer or in a dry state were very stable and no significant decrease in the electrode response was observed after three months. The biosensor was employed also to analyse a choline-containing pharmaceutical product and the results were compared to those obtained by enzymatic-spectrophotometric detection.  相似文献   

7.
《Analytical letters》2012,45(6):1389-1402
Abstract

A choline enzyme sensor, recently developed by the authors, was used for choline and acetylcholine determination in rat brain extracts, using choline oxidase immobilized on cellulose triacetate membranes, and acetylcholinesterase in homogeneous solution. the method proved useful for assay of the acetylcholine content in a commercial pharmaceutical formulation used in ophthalmology.  相似文献   

8.
Phospholipase D (EC 3.1.4.4.) and choline oxidase (EC 1.1.99.1.) are immobilized together on a hydrophobic agarose gel and used to convert the phospholipid to betaine and hydrogen peroxide, which is measured amperometrically at + 0.60 V vs. SCE. The response time of the sensor is 2 min, and the calibration curve for 0–3 g l-1 of phosphatidyl choline is linear. Different methods of insolubilizing the enzymes are compared.  相似文献   

9.
An amperometric flow biosensor for oxalate determination in urine samples after enzymatic reaction with oxalate oxidase immobilized on a modified magnetic solid is described. The solid was magnetically retained on the electrode surface of an electrode modified with Fe (III)-tris-(2-thiopyridone) borate placed into a sequential injection system preceding the amperometric detector. The variables involved in the system such as flow rate, aspired volumes (modified magnetic suspension and sample) and reaction coil length were evaluated using a Taguchi parameter design. Under optimal conditions, the calibration curve of oxalate was linear between 3.0-50.0 mg·L-1, with a limit of detection of 1.0 mg·L-1. The repeatability for a 30.0 mg·L-1 oxalate solution was 0.7%. The method was validated by comparing the obtained results to those provided by the spectrophotometric method; no significant differences were observed.  相似文献   

10.
《Electroanalysis》2017,29(7):1741-1748
The determination of lead ions by inhibition of choline oxidase enzyme has been evaluated for the first time using an amperometric choline biosensor. Choline oxidase (ChOx) was immobilized on a glassy carbon electrode (GCE) modified with multiwalled carbon nanotubes (MWCNT) through cross‐linking with glutaraldehyde. In the presence of ChOx, choline was enzymatically oxidized into betaine at –0.3 V versus Ag/AgCl reference electrode, lead ion inhibition of enzyme activity causing a decrease in the choline oxidation current. The experimental conditions were optimised regarding applied potential, buffer pH, enzyme and substrate concentration and incubation time. Under the best conditions for measurement of the lowest concentrations of lead ions, the ChOx/MWCNT/GCE gave a linear response from 0.1 to 1.0 nM Pb2+ and a detection limit of 0.04 nM. The inhibition of ChOx by lead ions was also studied by electrochemical impedance spectroscopy, but had a narrower linear response range and low sensitivity. The inhibition biosensor exhibited high selectivity towards lead ions and was successfully applied to their determination in tap water samples.  相似文献   

11.
An amperometric sensor for amino acids based on the immobilization of amino acid oxidase on the surface of a CuPtCl6/GC is described. The amperometric current is due to the oxidation of H2O2 liberated during the enzyme reaction on the surface of the enzyme electrode. The electrode response characteristics as well as kinetic parameters have been evaluated. The enzyme electrode was characterized as an electrochemical biosensor, which was used as detector in high performance liquid chromatography (HPLC) for the determination of a mixture of amino acids with satisfactory results. Received: 31 Jaunary 2000 / Revised: 31 March 2000 / Accepted: 3 April 2000  相似文献   

12.
A method for simultaneous covalent immobilization of glucose oxidase and peroxidase with previously oxidized carbohydrate residues to urea derivative of regenerated acetylcellulose granules is described. The effect of immobilization on the catalytic properties of the separately immobilized enzymes are studied. The immobilized enzymes manifested no change in their pH and temperature optima and slight increase ofK m x compared to data for the soluble enzymes. A column packed with simultaneously immobilized enzymes is used for manual glucose determination in blood sera. The results are in high correlation with those obtained by the Beckman Glucose Analyzer method (r = 0.976). The method is economic (the enzyme-carrier conjugate may be used more than 300 times), easy to perform, and less time consuming than the manual methods utilizing soluble enzymes. The established manual method can be proposed for emergency clinical analysis and smaller clinical laboratories.  相似文献   

13.
On the basis of the isoelectric point of an enzyme and the doping principle of conducting polymers, choline oxidase was doped in a polyaniline film to form a biosensor. The amperometric detection of choline is based on the oxidation of the H2O2 enzymatically produced on the choline biosensor. The response current of the biosensor as a function of temperature was determined from 3 to 40°C. An apparent activation energy of 22.8 kJ·mol−1 was obtained. The biosensor had a wide linear response range from 5 × 10−7 to 1 × 10−4 M choline with a correlation coefficient of 0.9999 and a detection limit of 0.2 μM, and had a high sensitivity of 61.9 mA·M−1·cm−2 at 0.50 V and at pH 8.0. The apparent Michaelis constant and the optimum pH for the immobilized enzyme are 1.4 mM choline and 8.4, respectively, which are very close to those of choline oxidase in solution. The effect of selected organic compounds on the response of the choline biosensor was studied.  相似文献   

14.
A sensor for acetylcholine/choline is described using a tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ) electrode modified with acetylcholine esterase (AChE) and choline oxidase (ChO) enzymes. DC cyclic voltammetry and impedance measurements of the enzyme-modified TTF-TCNQ electrode that indicate the regeneration of choline oxidase at the electrode surface are reported. Effective electrochemical rate constants for the present enzyme electrode are calculated using the expressions derived by Albery et al. (1), which show the enzyme kinetics as the rate-limiting step. The values of the effective electrochemical rate constants are close to those reported by Hale and Wightman (2). The application of the sensor is described for the determination of fluorode ion and nicotine based on the reversible inhibition of AChE activity. The range of detection of fluoride ion and nicotine is found to be 5×10-6 to 5×10-4M.  相似文献   

15.
Choline and acetylcholine sensors were prepared by using choline oxidase and acetylcholinesterase, entrapped in photocross- linkable poly(vinyl alcohol) bearing styrylpyridinium (PVA-SbQ). The measurements were based on the detection of hydrogen peroxide liberated by an enzyme reaction (choline oxidase) or two sequential enzyme reactions (acetylcholine esterase and choline oxidase). The determination range for choline was 2.5-2-150 αmol 1-1 and for acetylcholine 20-2-750 αmol 1-1. The response times were 2-2-4 min. The immobilized enzyme membranes stored in a dry state were very stable and no loss of activity was observed after storage for 60 days.  相似文献   

16.
An amperometric sensor for amino acids based on the immobilization of amino acid oxidase on the surface of a CuPtCl(6)/GC is described. The amperometric current is due to the oxidation of H2O2 liberated during the enzyme reaction on the surface of the enzyme electrode. The electrode response characteristics as well as kinetic parameters have been evaluated. The enzyme electrode was characterized as an electrochemical biosensor, which was used as detector in high performance liquid chromatography (HPLC) for the determination of a mixture of amino acids with satisfactory results.  相似文献   

17.
An amperometric nicotine inhibition biosensor has been substantially simplified and used for determination of nicotine in tobacco sample. Besides the use of single enzyme choline oxidase to replace bienzyme, the use of 1,4-benzoquinone as an electron mediator makes it possible to avoid the use of oxygen or hydrogen peroxide sensor as the internal transducer. Choline oxidase was immobilized on the carbon paste electrode through cross-linking with bovine serum albumin (BSA) by glutaraldehyde. In the presence of choline oxidase and its endogenous cofactor flavin-ademine dinneleotide (FAD), choline was oxidized into betaine while FAD was reduced to FADH2 which subsequently reduced 1,4-benzoquinone into hydroquinone. The later was finally oxidized at a relatively low potential of +450 mV versus saturated calomel electrode (SCE). Nicotine inhibits the activity of enzyme with an effect of decreasing of oxidation current. The experimental conditions were optimized. The electrode has a linear response to choline within 1.25×10−4 to 1.25×10−3 mol l−1. The nicotine measurements were carried out in 0.067 mol l−1phosphate buffer of pH 7.4 at an applied potential of 450 mV versus SCE. The electrode provided a linear response to nicotine over a concentration range of 2.0×10−5 to 9.2×10−4 mol l−1 with a detection limit of 1.0×10−5 mol l−1. The system was applied to the determination of nicotine in tobacco samples.  相似文献   

18.
A detector for the simultaneous determination of choline (Ch) and acetylcholine (ACh) based on a sensitive trienzyme chemiluminometric biosensor in a single line flow injection (FI) system is described. Immobilized choline oxidase (ChOx), immobilized peroxidase (POx), immobilized acetylcholinesterase, and coimmobilized ChOx/POx were packed, in turn, in a transparent ETFE tube (1 mm i.d., 75 cm) and the tube was placed in front of a photomultipier tube as a flow cell. Two-peak response was obtained by one injection of the sample solution. The first and second peaks were dependent on the concentrations of Ch and ACh, respectively. The influence of some experimental parameters such as flow rate, amounts of immobilized enzymes on the behavior of the sensor was studied in order to optimize the sensitivity, sample throughput and resolution. Calibration curves were linear at 1 - 1000 nM for Ch and 3 - 3000 nM for ACh. The sample throughput was 25/h without carryover. The FI system was applied to the simultaneous determination of Ch and ACh in rabbit brain tissue homogenates.  相似文献   

19.
《Analytical letters》2012,45(7):871-889
Abstract

A flow injection manifold containing a dialyzer and reactors with immobilized galactose oxidase and peroxidase was used for the determination of galactose in urine, lactose in milk and dihydroxyacetone in a biotechnological reaction medium. The hydrogen peroxide which is formed by the galactose oxidase reaction was detected by amperometric reduction of a mediator. The latter had been produced from hydrogen peroxide in a peroxidase catalyzed reaction. The hydrogen peroxide detection step was studied with several mediators and hexacyanoferrate (II) was selected. An ion exchange HPLC procedure was used to purify the galactose oxidase, in particular from catalase, and the kinetics and the selectivity of a reactor containing the immobilized enzyme was investigated. Columns for removal of certain interferents such as ascorbic acid were used in the determination of galactose in urine. The response to galactose standards was linear from the detection limit of 2 μM to 60 mM. The throughput was 45 samples per hour and the relative standard deviation 0.4%.  相似文献   

20.
A novel amperometric choline biosensor has been fabricated with choline oxidase (ChOx) immobilized by the sol-gel method on the surface of multi-walled carbon nanotubes (MWCNT) modified platinum electrode to improve the sensitivity and the anti-interferential property of the sensor. By analyzing the electrocatalytic activity of the modified electrode by MWCNT, it was found that MWCNT could not only improve the current response to H2O2 but also decrease the electrocatalytic potential. The effects of experimental variables such as the buffer solutions, pH and the amount of loading enzyme were investigated for the optimum analytical performance. This sensor shows sensitive determination of choline with a linear range from 5.0 × 10−6 to 1.0 × 10−4 mol/L when the operating pH and potential are 7.2 and 0.15 V, respectively. The detection limit of choline was 5.0 × 10−7 mol/L. Selectivity for choline was 9.48 μA·(mmol/L)−1. The biosensor exhibits excellent anti-interferential property and good stability, retaining 85% of its original current value even after a month. It has been applied to the determination of choline in human serum. Translated from Chinese Journal of Analytical Chemistry, 2006, 34(7): 910–914 (in Chinese)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号