首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The distinction between liquid chromatography and flow injection analysis is discussed in terms of the underlying concepts, the performance characteristics and the hardware involved. For the last aspect, attention is focused on the role of the detector and the development of spectroscopic detectors for these techniques is discussed. The limitations of atomic spectrometric detectors are discussed for the three most widely used techniques, flame atomic absorption spectrometry, plasma spectrometry and electrothermal atomisation atomic absorption spectrometry, and the recent literature concerned with the use of these techniques for chromatographic detectors is summarized. The use of flow-injection methods to extend the capabilities of the techniques, particularly as far as detection limits and matrix interferences are concerned, is discussed. These topics are illustrated by a detailed review of relevant papers from 1988 and 1989. It is concluded that there is a considerable sustained research effort in this field.  相似文献   

2.
A method for the determination of tin and organotin species by hydride generation is described. Tin hydrides are detected by graphite-furnace atomic absorption, quartz-cuvette atomic absorption, or flame emission spectrometry with detection limits of 50, 50, and 20 pg as tin, respectively. Germanium interferences are eliminated with a dual-detector flame photometer with an electronic cancellation circuit.  相似文献   

3.
The introduction of volatile organic solvents and metal organic complexes into an inductively coupled plasma (ICP) is problematic due to overloading and pyrolysis effects. These include carbon built up in the torch and spectral interferences. As a consequence, solvent extraction as a method for preconcentrating trace metals for the determination by ICP has been limited. In this report a commercial ultrasonic nebulizer-membrane separation interface (USN-MEMSEP) for the direct introduction and separation of organic solvents using ICP atomic emission spectrometry (AES) and a sequential spectrometer has been evaluated for solvent extraction of chelated trace metals. The ability of the MEMSEP to separate volatile organic flows from metal aerosols has been demonstrated by determining the recoveries of several transition metals in an oil-based methyl-isobutyl ketone (MIBK) standard relative to an aqueous solution. However, low recoveries of several metal chelates have been found evidently due to the volatilization of the organic metal species at the boiling point of MIBK (160° C). Moreover, the multielement capability and limits of detection have been limited due to sequential atomic emission detection. Advantages of the technique include enhanced limits of detection (LODs) and reduced plasma and spectral interferences.  相似文献   

4.
The introduction of volatile organic solvents and metal organic complexes into an inductively coupled plasma (ICP) is problematic due to overloading and pyrolysis effects. These include carbon built up in the torch and spectral interferences. As a consequence, solvent extraction as a method for preconcentrating trace metals for the determination by ICP has been limited. In this report a commercial ultrasonic nebulizer-membrane separation interface (USN-MEMSEP) for the direct introduction and separation of organic solvents using ICP atomic emission spectrometry (AES) and a sequential spectrometer has been evaluated for solvent extraction of chelated trace metals. The ability of the MEMSEP to separate volatile organic flows from metal aerosols has been demonstrated by determining the recoveries of several transition metals in an oil-based methyl-isobutyl ketone (MIBK) standard relative to an aqueous solution. However, low recoveries of several metal chelates have been found evidently due to the volatilization of the organic metal species at the boiling point of MIBK (160° C). Moreover, the multielement capability and limits of detection have been limited due to sequential atomic emission detection. Advantages of the technique include enhanced limits of detection (LODs) and reduced plasma and spectral interferences.  相似文献   

5.
Beryllium (Be) has been used widely in specific areas of nuclear technology. Frequent monitoring of air and possible contaminated surfaces in U.S. Department of Energy (DOE) facilities is required to identify potential health risks and to protect U.S. DOE workers from beryllium-contaminated dust. A new method has been developed to rapidly remove spectral interferences prior to beryllium measurement by inductively coupled plasma atomic emission spectrometry (ICP-AES) that allows lower detection limits. The ion exchange separation removes uranium (U), plutonium (Pu), thorium (Th), niobium (Nb), vanadium (V), molybdenum (Mo), zirconium (Zr), tungsten (W), iron (Fe), chromium (Cr), cerium (Ce), erbium (Er) and titanium (Ti). A stacked column consisting of Diphonix Resin and TEVA Resin reduces the levels of the spectral interferences so that low level Be measurements can be performed accurately. If necessary, an additional anion exchange separation can be used for further removal of interferences, particularly chromium. The method has been tested using spiked filters, spiked wipe samples and certified reference material (CRM) standards with high levels of interferences added. The method provides very efficient removal of spectral interferences with very good accuracy and precision for beryllium on filters or wipes. This new method offers improvements over other separation methods that have been used by removing large amounts of all the significant spectral interferences with greater simplicity and effectiveness. The effective removal of spectral interferences allows lower method detection limits (MDL) using inductively coupled atomic emission spectrometry. A vacuum box system is employed to reduce analytical time and reduce labor costs.  相似文献   

6.
A new metallic atomization cell is used for trace metal determinations by tungsten coil atomic absorption spectrometry and tungsten coil atomic emission spectrometry. Different protecting gas mixtures are evaluated to improve atomic emission signals. Ar, N2, CO2 and He are used as solvents, and H2 and C2H2 as solutes. A H2/Ar mixture provided the best results. Parameters such as protecting gas flow rate and atomization current are also optimized. The optimal conditions are used to determine the figures of merit for both methods and the results are compared with values found in the literature. The new cell provides a better control of the radiation reaching the detector and a small, more isothermal environment around the atomizer. A more concentrated atomic cloud and a smaller background signal result in lower limits of detection using both methods. Cu (324.7 nm), Cd (228.8 nm) and Sn (286.3 nm) determined by tungsten coil atomic absorption spectrometry presented limits of detection as low as 0.6, 0.1, and 2.2 μg L−1, respectively. For Cr (425.4 nm), Eu (459.4 nm) and Sr (460.7 nm) determined by tungsten coil atomic emission spectrometry, limits of detection of 4.5, 2.5, and 0.1 μg L−1 were calculated. The method is used to determine Cu, Cd, Cr and Sr in a water standard reference material. Results for Cu, Cd and Cr presented no significant difference from reported values in a 95% confidence level. For Sr, a 113% recovery was obtained.  相似文献   

7.
Inductively coupled plasma quadrupole mass spectrometry (ICP-QMS), ICP sector field mass spectrometry (ICP-SFMS) and ICP atomic emission spectrometry (ICP-AES) were compared with regard to the direct determination of rare earth elements (REEs) in geological samples. In order to reduce the polyatomic interferences occurring in ICP-QMS, the use of a cooled spray chamber was optimized, obtaining a significant decrease of the oxide ions formation (about 50%) and a consequent mitigation of the interfering effects. Precision and accuracy of the method were demonstrated by the analyses of sediment and soil certified reference materials. ICP-SFMS working in high-resolution mode also provided accurate results, with similar precision to ICP-QMS (RSD%: 3-8%) and comparable or better limits of detection. Quantification limits of the procedures were 18-52 ng g−1 and 10-780 ng g−1 for sector field- and quadrupole-ICP-MS, respectively. Accurate and precise determination of most REEs was also achieved by ICP-AES using both pneumatic and ultrasonic nebulization, after a careful selection of the emission lines and compensation for non-spectral interferences by internal standardization. The three techniques were finally applied to glaciomarine sediment samples collected in Antarctica, providing comparable analytical data on REE abundance and depth pattern.  相似文献   

8.
Substantial improvements in amperometric monitoring of flowing streams are obtained by using Nafion-coated working electrodes. The charged coating tends to exclude anionic and neutral interferences, thus adding a new dimension of selectivity to electrochemical detection for flow-injection and liquid-chromatographic systems. A highly selective response is observed for cationic neurotransmitters in the presence of otherwise interfering substances (e.g., ascorbic acid, uric acid, bilirubin or chlorpromazine). The permselectivity and transport characteristics are evaluated with respect to solution pH, solvent, flow rate, film thickness, and other variables. The reduced flow-rate dependence results in low noise levels and detection limits of 0.04 and 0.10 ng of norepinephrine and epinephrine, respectively. A bilayer electrode coating, with a cellulose acetate film over the Nafion layer, offers a bifunctional (selectivity, protection) capability. Applicability to urine samples is demonstrated.  相似文献   

9.
Combinations of flow-injection techniques with flame atomic absorption spectrometry (a.a.s.) and inductively-coupled plasma/atomic emission spectrometry (i.c.p./a.e.s.) are reviewed in the general context of agricultural and environmental analysis. The flow-injection systems are valuable for sample introduction; appropriate dispersion control allows the analysis of solutions containing as much as 40% (w/v) urea or phosphate in fertilizers. A study on the determination of cadmium in soil extracts by on-line ion-exchange preconcentration and flame a.a.s. detection is described. The interpolative standard-addition method with i.c.p./a.e.s. detection is outlined. Improvements in the determinations of selenium in environmental samples by hydride-generation a.a.s. and of mercury by cold-vapour a.a.s. are reported.  相似文献   

10.
A solution-cathode glow discharge was used for atomic emission spectrometry. The acidic reagent, discharge current, and flow rate were optimized. The detection limits for sodium, potassium, calcium, and magnesium were 1.51, 4.13, 131, and 54.9?µg?L?1, respectively. The relative standard deviation for five replicates was from 0.52 to 3.00%. Sodium, potassium, calcium, and magnesium were determined in mineral water by solution-cathode glow discharge–atomic emission spectrometry. The results demonstrate that the protocol is suitable for the elemental analysis of mineral water.  相似文献   

11.
Experimental studies and computer simulations were conducted to identify plasma operating conditions and to explore and contrast the excitation conditions of Ar, Ar-O2, and Ar-He inductively coupled plasmas (ICPs) for the introduction of microliter volumes of sample solutions with a direct injection high efficiency nebulizer (DIHEN). The best MgII 280.270 nm/MgI 285.213 nm ratio (6.6) measured with Ar ICP atomic emission spectrometry for the DIHEN (RF power = 1500 W; nebulizer gas flow rate = 0.12 L min(-1)) was less than the ratio (8.2) acquired on the same instrument for conventional nebulization (1500 W and 0.6 L min(-1)). Addition of small amounts of O2 or He (5%) to the outer gas flow improved excitation conditions in the ICP, that is, a more robust condition (a MgII/MgI ratio of up to 8.9) could be obtained by using the DIHEN with Ar-O2 and Ar-He mixed-gas plasmas, thereby minimizing some potential spectroscopic and matrix interferences, in comparison to Ar ICPAES.  相似文献   

12.
This work concerns non-spectral interferences occurring in flameless atomic absorption spectrometry using a Varian Techtron CRA model 63 instrument. Special attention has been paid to the influence exerted by concomitants on the vaporization and atomization behaviour of the test elements Be, Mn and Zn. Tracer analysis permitted the direct determination of the vaporization patterns of the test elements during the atomization phase. The variation of the transient absorption signals with time was measured using an electronic recording system sufficiently fast to obtain instrumentally undistorted pulses. The concomitants were selected on the basis of literature dealing with thermochemical processes in are emission spectrometry. Results are discussed on the basis of (i) the decrease of the content of the test element in the furnace, (ii) the characteristics of the absorption signal, and (iii) the surface temperature of the furnace. It turned out that the class “atomization efficiency interferences” might constitute one of the most serious sources of systematic error in frameless atomic absorption spectrometry.  相似文献   

13.
A flow-injection system with on-line ion-exchange preconcentration on dual columns is described for the determination of trace amounts of heavy metals at μg l?1 and sub-μg l?1 levels by flame atomic absorption spectrometry. The degree of preconcentration ranges from 50- to 105-fold for different elements at a sampling frequency of 60 s h?1. The detection limits for Cu, Zn, Pb and Cd are 0.07, 0.03, 0.5, and 0.05 μg l?1, respectively. Relative standard deviations were 1.2–3.2% at μg l?1 levels. The behaviour of the different chelating exchangers used was studied with respect to their preconcentration characteristics, with special emphasis on interferences encountered in the analysis of sea water.  相似文献   

14.
Ion mobility spectrometry (IMS) was used as a flow-injection detector to quantitatively examine the ionization chemistry of aniline in hexane. A 5-microl sample was vaporized at 15-90-sec intervals in a flowing air stream and analyzed with an IMS equipped with acetone reactant ion chemistry, ambient temperature drift tube and membrane-based inlet. Precision was 3-11% relative standard deviation for 1-100 ppm aniline in hexane with 90-sec injection intervals and detection limits were ca. 0.5 ppm with 5-microl injections. Matrix effects with amine and organic solvent mixtures were observed and corrected for low and medium proton affinity interferences with standard addition methods. Pronounced fouling of the IMS occurred when a continuous water flow was introduced for aqueous flow injection-IMS. Continuous water monitoring without degraded IMS performance was possible by sampling air flow through a Silastic tube immersed in an aqueous sample.  相似文献   

15.
Wu P  Wen X  He L  He Y  Chen M  Hou X 《Talanta》2008,74(4):505-511
A tungsten coil electrothermal vaporizer (W-coil ETV) was coupled to an Ar/H(2) flame atomic fluorescence spectrometer for the determination of eight traditional hydride-forming elements (i.e., As, Bi, Ge, Pb, Sb, Se, Sn, and Te) as well as cadmium without chemical vapor generation. A small sample volume, typically 20muL, was manually pipetted onto the W-coil and followed by a fixed electric heating program. During the vaporization step, analyte was vaporized off the coil surface and swept into the quartz tube atomizer of AFS for further atomization and excitation of atomic fluorescence by a flow of Ar/H(2) gas, which was ignited to produce the Ar/H(2) flame. The tungsten coil electrothermal vaporizer and Ar/H(2) flame formed a tandem atomizer to produce reliable atomic fluorescence signals. Under the optimal instrumental conditions, limits of detection (LODs) were found to be better than those by flame atomic absorption spectrometry (FAAS) or inductively coupled plasma optical emission spectrometry (ICP-OES) for all the nine elements investigated. The absolute LODs are better or equivalent to those by hydride generation atomic fluorescence spectrometry (HG-AFS). Possible scattering interferences were studied and preliminary application of the proposed method was also reported.  相似文献   

16.
A flow-injection system is described for on-line conversion of a soluble species to an insoluble compound by means of a tag-material which subsequently can be determined. This approach is used for the determination of sulphide by flame atomic absorption spectrometry, cadmium(II) ions being used as the precipitating tag-reagent. Excess of cadmium(II) is collected on a chelating ion-exchanger and later eluted. The detection limit for sulphide was 10 μg l?1 and the sampling rate was 100 h?1. Typical relative standard deviation was 1.2%. Of the potential interferences tested, only phosphate had any effect.  相似文献   

17.
This paper deals with the investigation of an image dissector echelle spectrometer as an analytical instrument for flame atomic fluorescence spectrometry and for flame atomic emission spectroscopy. The fluorescence was induced by high-pressure xenon arc lamps, which emitted continuum spectra and had higher power ratings, i.e. 1.6 and 2.5 kW, than those normally used for the same purpose. The experimental set-up included two different types of premix burners and one type of total consumption burner. A spherical reflector was applied to improve the utilization of the fluorescence radiation. Two different coatings were tested. None gave the expected enhancement.Detection limits and growth curves were measured for 8 different elements (Ca, Co, Cu, Fe, K, Mg, Na and Ni) in a non-separated air/acetylene flame. The attained detection limits were found to be equally good or somewhat better in flame atomic fluorescence excited with continuum sources than previously reported in the literature, i.e. using similar flames. In flame atomic emission spectroscopy better detection limits have been reported before.  相似文献   

18.
The behaviour of an infrared desolvation system with acid solutions in inductively coupled plasma atomic emission spectrometry (ICP-AES) is evaluated, and the influence of the liquid uptake rate and of the nature and concentration of the acid on the solvent and analyte transport rates and on the analytical figures of merit is studied. The results are compared with those obtained with a desolvation system based on the absorption of microwave radiation. The infrared desolvation system performs best at low sample uptake rates (0.4 ml min−1) and its behaviour strongly depends on the nature and concentration of the solution used. With nitric and hydrochloric solutions, there is almost no effect of the acid concentration on the emission intensity, while for sulfuric and perchloric acids the signal decreases as the acid concentration is increased. These effects seem to be related with the different capability of the acid aerosols to be heated in an IR field. The microwave desolvation system seems to be more prone to matrix (acid) effects, specially when using sulfuric and perchloric acids, resulting in emission intensities which are usually lower than those obtained with the infrared desolvation system, though their limits of detection are quite similar.  相似文献   

19.
Conventional figures of merit such as limits of detection, signal to background ratio or repeatability, are used to determine the performance of pneumatic and ultrasonic sample introduction systems in an ultra-clean environment with an axially viewed inductively coupled plasma-atomic emission spectrometry and multichannel detection. We observed that the ultrasonic nebuliser offered a large improvement of signal intensity (10-133 greater) compared to a cyclone chamber coupled with a pneumatic Meinhard nebuliser. This improvement is associated with an average increase of signal to background ratio by a factor 86 and an average decrease of detection limits by a factor 6. The improvement factors generally depend on the element and for the same element on spectral lines. Typically, the observed values of detection limits in this work are lower than those published and obtained in non-ultra-clean conditions. The results emphasize that the environmental conditions of cleaning and analysis are essential to avoid and control cross contamination of the samples and hence to obtain low detection limits.  相似文献   

20.
Ye D  Zhang H  Jin Q 《Talanta》1996,43(4):535-544
This paper describes an improvement in detection capability of microwave plasma torch atomic emission spectrometry by using a flow-injection on-line column preconcentration system. The analytical performances of Cd, Cu, Mn and Zn were studied. The analytes were preconcentrated with a thiol resin. The preconcentration period, the pH of the sample solution and the HCl concentration in the eluant were examined in detail. Operating conditions were optimized as follows: sample uptake, 1.2 ml min(-1); preconcentration period, l min; pH of sample solution, 9; HCl concentration in the eluant, 1 mol 1(-1). The experimental results show that flow-injection on-line column preconcentration can not only eliminate the effect of some concomitant elements, such as Li, Na and K, on the determination of analyte, but also enhance the sensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号