首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The bienzyme system consisting of glucose oxidase and gluconolactonase was investigated using a conventional diffusion-kinetics model for an enzyme-modified field-effect transistor (FET) to clarify the effect of gluconolactonase coimmobilization in a glucose oxidase membrane on the steady-state response amplitude of a glucose sensor based on a FET. The model includes spontaneous and enzymatic hydrolysis reactions of d-glucono-δ-lactone and it elucidated the following experimental results: a glucose sensor with a membrane (about 1 μm in thickness) coimmobilizing these enzymes showed a sufficient response amplitude, whereas without coimmobilization of gluconolactonase no detectable response was observed up to 3 mM glucose; and the response amplitude depended strongly on the amount of lactonase in the membrane. The model also predicted an optimum enzyme ratio for coimmobilization in a membrane.  相似文献   

2.
A photopolymer solution consisting of polyvinylpyrrolidone and 2,5-bis(4′-azido-2′-sulfobenzal)cyclopentanone is used to make a patterned glucose oxidase membrane for a FET-glucose sensor by photolithography. A small patterned glucose oxidase membrane, 0.2 mm wide and 1 mm long, is made on the gate surface of an ISFET by developing a photocross-linked glucose oxidase membrane with aqueous 1–3% glutaraldehyde solution. The optimum composition of the enzyme/photopolymer solution is described. The sensor with the patterned membrane showed linear response to glucose concentration from 0.3 to 2.2 mM and useful response up to 5 mM.  相似文献   

3.
Dam TV  Pijanowska D  Olthuis W  Bergveld P 《The Analyst》2003,128(8):1062-1066
In this paper, glucose is potentiometrically measured by using a specific field effect transistor, the EMOSFET. In this device, glucose oxidase is immobilized within a bovine serum albumin matrix, using glutaraldehyde. This layer is deposited on the top of an electroactive Os-polyvinylpyridine layer containing horseradish peroxidase, which is used as the gate material of the FET. The basic principle of the sensor is to measure the glucose concentration by means of measuring the change in the work function of the electroactive gate due to its redox reaction with the H2O2, generated by the reaction between glucose and glucose oxidase. The change in the work function can be detected as a change in the threshold voltage of the FET. Moreover, a measuring mode called "constant current potentiometry" has been applied to improve the sensitivity of the sensor. The sensitivity of the sensor working in this mode is found to be much higher than the Nernstian value. The experimental results show that the detection limit of the sensor can be tuned depending on the value of the applied current and the glucose oxidase concentration in the gate.  相似文献   

4.
A biocompatible needle-type glucose sensor with a 3-electrode configuration was constructed. A platinum-electroplated carbon stick was used as the working electrode, Ag/AgCl as the reference electrode, and a disposable hypodermic needle made of stainless steel as the counter electrode. A Nafion membrane, an immobilized glucose oxidase (GOD) membrane, and a biocompatible membrane with diffusion-limiting effect were coated successively onto the working electrode. The sensor showed a rapid response (< 120 s in batch operation), good reproducibility (RE < 3%), good stability (over 36 h in control serum), a wide dynamic range (5-600 mg/dL glucose), and superior biocompatibility. It was used to determine glucose in serum. The data obtained from the sensor showed good agreement with that from a clinical autoanalyzer (R > 0.95).  相似文献   

5.

Frequency response of the glucose sensor based on the immobilized glucose oxidase membrane was investigated experimentally by giving the sinusoidal change of glucose concentration to the glucose sensor and observing its output signal. Observed values of gains and phase lags of the frequency response of the glucose sensor followed the frequency response model of the first-order with dead time; The time constant and also the dead time were estimated and found to decrease as the amount of enzyme immobilized in the membrane increased and the thickness of the membrane decreased.

  相似文献   

6.
We describe the detection of glucose based on a liquid-ion gated field-effect transistor configuration in which enzyme-functionalized polypyrrole nanotubes are employed as the conductive channel. First of all, carboxylated polypyrrole nanotubes (CPNTs) were successfully fabricated by the chemical polymerization of an intrinsically functionalized monomer (pyrrole-3-carboxylic acid, P3CA) without degradation in major physical properties. The CPNTs possessed not only well-defined functional groups but also electrical properties comparable to nonsubstituted polypyrrole. Importantly, the carboxylic acid functional group can be utilized for various chemical and biological functionalizations. A liquid-ion gated FET sensor was readily constructed on the basis of the chemical functionality of CPNTs. In the first stage, the CPNTs were immobilized onto a microelectrode substrate via covalent linkages. It was noteworthy that the covalent immobilization allowed high-quality contact between the nanotubes and the microelectrodes in the liquid phase. The second stage involved the covalent binding of glucose oxidase (GOx) enzyme to the nanotubes. The covalent functionalization generally provides excellent enzymatic activity and thermal stability. The fabricated FET sensor provided real-time response (an increase in source-drain current) and high sensitivity toward the various concentrations (0.5-20 mM) of glucose. The enzymatic reaction product, hydrogen peroxide, played pivotal roles in modulating the charge transport property of CPNTs.  相似文献   

7.
《Analytical letters》2012,45(12):2535-2542
Abstract

A glucose sensor based on glucose oxidase and a new mediator - 4,5-dimethyl-4′-methylthio-Δ 2,2′-bi-1,3-dithiole (MTTTF) is described. The background for sensor action is the effective MTTTF cation interaction (apparent bimolecular constant (2.0+/-0.5)?106 M?1 s?1 at 25°C and pH 7.0) with reduced glucose oxidase and the high electrochemical rate of mediator transformation.

A glucose sensor was prepared by adsorbing mediator (MTTTF) and glucose oxidase on graphite rods. The sensor responds to glucose at electrode potentials higher than 50 mV vs SCE, but the maximal activity is obtained at a potential of 250 mV. In air saturated solution the electrode shows a non-linear calibration curve with a half-saturation concentration 10.4 mM and Hill coefficient 2.08 at 250 mV. Sensor response changes little at pH 6.5–8.0. The energy of activation of the sensor response calculated from the Arrhenius equation was 64.5 kJ/mol, and the temperature coefficient at 25°C was 9.2%.  相似文献   

8.
《Analytical letters》2012,45(19-20):1973-1986
Abstract

A very small glucose sensor has been realized, which consists of a gold working electrode with a glucose oxidase immobilized membrane on it, and a gold counter electrode, all made on a sapphire substrate. By using the pH sensitive ISFET as a reference electrode, the potential for a solution, whose pH is constant, can be measured and irreversible metal electrodes, such as gold or platinum, can be used as working electrode and counter electrode. The sensor is very suitable for miniaturizing and mass production, because the Integrated Circuit (IC) fabrication process can be applied. The glucose oxidase immobilized membrane was also deposited by a lift off method, one of the IC processes. A glucose concentration, from 1 to 100 mg/dl, was measured with good linear current output.  相似文献   

9.
Two enzmyes, glucose oxidase and peroxidase, were for the first time simultaneously immobilized in regenerated silk fibroin membrane. The structure and morphology of the regenerated silk fibroin membrane containing both glucose oxidase and peroxidase were investigated with IR spectra and SEM. The bienzymes do not change the structures of the regenerated silk fibroin in the membrane, which has an islands-sea structure. For the first time, an amperometric methylene green mediating sensor for glucose based on co-immobilization of both glucose oxidase and peroxidase in regenerated silk fibroin was constructed. Cyclic voltammetry and amperometry were used to test the suitability of methylene green shuttling electrons between peroxidase and the glassy carbon electrode. The bienzyme-based system offers fast response and high sensitivity of the sensor to glucose. The effects of pH, temperature, and the concentration of the mediator on the response current were evaluated, and the dependence of the Michaelis-Menten constant K(m)(app) on the concentration of the mediator was investigated.  相似文献   

10.
In this work we demonstrate a novel microfluidic based platform to investigate the performance of 3D out-of-plane microspike array based glucose and lactate biosensors. The microspike array was bonded with a glass slide and modified with glucose oxidase or lactate oxidase using covalent coupling chemistry. An epoxy-polyurethane based membrane was used to extend the linear working range (from 0 to 25 mM of substrate) of these biosensors. Both lactate and glucose sensors performed well in the clinically relevant substrate concentration range. Glucose microspikes were further investigated with respect to the effects of substrate transfer by incorporation into a microfluidic system. Data from the microfluidic system revealed that the sensor response is mainly dependent on enzyme kinetics rather than membrane permeability to glucose. The robustness of the sensors was demonstrated by its consistency in performance extending over 48 h.  相似文献   

11.
将葡萄糖氧化酶(GOD)固定在α-环糊精聚合物中,而电子传递体分子被包含在环糊精腔穴中。固定化酶膜的FTIR测定表明,GOD与环糊精聚合物发生共价连接。制备了含电子传递体的不同GOD酶电极并比较了它们的性能。含四硫代富瓦烯的酶电极具有良好的电流响应特性,可望成为第二代葡萄糖酶电极的新构型。  相似文献   

12.
A novel fabrication of an amperometric glucose sensor by layer after layer approach is described. The sensor electrode is fabricated by arranging a layer of Pt black, a layer of glucose oxidase (GOD) and a layer of stabilizer gelatin on a shapable electro-conductive (SEC) film surface. Finally, the dried layered-assembly is cross-linked by exposing to a diluted glutaraldehyde solution. The performance of the developed sensor is evaluated by a FIA system at 37°C and under a continuous polarization at 0.4 V (vs. Ag/AgCl). The sensitivity of the sensor was dependent on the amount of GOD loaded. The highest sensitivity (3.6 μA/mM cm−2) of the sensor was obtained at a GOD loading of 160 μg/cm2, and the linear dynamic range was extended to 80 mM level when the sensor was covered with a polycarbonate membrane. The sensor shows an extremely stable response for several weeks and a storage stability of over 2 years.  相似文献   

13.
An amperometric glucose biosensor on layer by layer assembled carbon nanotube and polypyrrole multilayer film has been reported in the present investigation. Homogeneous and stable single wall carbon nanotubes (SWNTs) and polypyrrole (PPy) multilayer films were alternately assembled on platinum coated Polyvinylidene fluoride (PVDF) membrane. Since conducting polypyrrole has excellent anti‐interference ability, protection ability in favor of increasing the amount of the SWNTs on platinum coated PVDF membrane and superior transducing ability, a layer by layer approach of polypyrrole and carbon nanotubes has provided an excellent matrix for the immobilization of enzyme. The layer‐by‐layer assembled SWNTs and PPy‐modified platinum coated PVDF membrane is shown to be an excellent amperometric sensor over a wide range of concentrations of glucose. The glucose oxidase (GOx) was immobilized on layer by layer assembled film by a physical adsorption method by cross linking through Glutaraldehyde. The glucose biosensor exhibited a linear response range from 1 mM to 50 mM of glucose concentration with excellent sensitivity of 7.06 μA/mM.  相似文献   

14.
Glucose oxidase was immobilized on a Millipore (MP) filter by coating with plasma-polymerized propargyl alcohol. The resulting immobilized enzyme membrane was used as a glucose sensor. The properties as a glucose electrode system were evaluated by amperometric response with either the steady-state method or the reaction rate method. The response was proportional to concentrations of the glucose solution up to 2 mM and the sensitivity was dependent on the amount of GOD impregnated into the MP filter.  相似文献   

15.
Specific antibodies labelled with glucose oxidase are immobilized onto a gelatin membrane, which is fixed over an oxygen electrode. The sensor is immersed in a standard glucose solution and a signal is obtained by measuring the consumption of oxygen by the enzyme catalyzed reaction. The response increases linearly with increasing antigen concentration over the range 0.1–100 μg 1?1. A microcomputer is used for data acquisition and processing.  相似文献   

16.
Deng Q  Li B  Dong S 《The Analyst》1998,123(10):1995-1999
A novel poly(vinyl alcohol) grafting 4-vinylpyridine self-gelatinizable copolymer was adapted to immobilize glucose oxidase. The reduction of hydrogen peroxide (H2O2) was detected at a Prussian Blue (PB) modified graphite electrode. A stable and sensitive glucose amperometric biosensor is described. The copolymer is a good biocompatible polymer in which the glucose oxidase retains high activity. Moreover, the copolymer can adhere firmly to the inorganic PB membrane. The sensor showed an apparent Michaelis-Menten constant of 18 +/- 0.2 mM and a maximum current density of 1.14 microA cm-2 mM-1. The linear range is from 5 microM to 4.5 mM glucose and the detection limit is 0.5 microM glucose. The catalytic efficiency of PB for the reduction of H2O2 is higher than that for the oxidation of H2O2. Glucose concentrations in serum samples from healthy persons and diabetic patients were determined using the sensor. The results compared well with those provided by the hospital using a spectroscopy method.  相似文献   

17.
Jianzhong L  Zhujun Z  Ling L 《Talanta》1994,41(11):1999-2002
A simplified enzyme-based fiber optic sensor system has been developed for selective determination of hydrogen peroxide. Horseradish peroxidase (HRP) is immobilized on bovine albumin matrix with glutaraldehyde. A new fluorimetric substrate, thiamine is used to indicate the sensing process. Under optimized condition the measuring range of sensor is up to 1 x 10(-4)M hydrogen peroxide with a limit of detection of 5 x 10(-7)M in a 5 min response period. It can be easily incorporated in multienzyme sensors for biochemical substances which produce hydrogen peroxide under catalytic oxidation by their oxidase. This possibility has been tested for the determination of uric acid, D-amino acid, L-amino acid, glucose cholesterol, choline and acetylcholine, respectively, using a membrane with co-immobilized oxidase and horseradish peroxidase.  相似文献   

18.
Sun LX  Xu F  Okada T 《Talanta》1998,47(5):2012-1174
A new amperometric glucose sensor based on the glucose oxidase immobilized on pyrolytic graphite (PG) modified with tetraammineplatinum(II) chloride (TAPtCl) and 5,10,15,20-tetrakis (4-methoxy-phenyl)-21H,23H-porphine cobalt(II) (TMPPCo) as well as Nafion was studied. The performances amongst the glucose sensors with or without TAPtCl or/and TMPPCo measured with oxygen present in the solution were compared. The compositions of the membranes of the glucose sensors were optimized by a new orthogonal experimental design technique–sequential level elimination method according to chemometric approaches. Our studies show that the prepared sensor with optimal membrane composition in this study gives satisfactory performance in terms of long-term stability, fast amperometric response, good detection limits and satisfactory recovery. The study provides a useful basis for developing other sensors with corresponding optimal membranes.  相似文献   

19.
A novel multilayer gold nanoparticles/multiwalled carbon nanotubes/glucose oxidase membrane was prepared by electrostatic assembly using positively charged poly(dimethyldiallylammonium chloride) to connect them layer by layer. The modification process and membrane structures were characterized by atomic force microscopy, scanning electron microscopy and electrochemical methods. This membrane showed excellent electrocatalytic character for glucose biosensing at a relatively low potential (?0.2 V). The Km value of the immobilized glucose oxidase was 10.6 mM. This resulting sensor could detect glucose up to 9.0 mM with a detection limit of 128 μM and showed excellent analytical performance.  相似文献   

20.
《Analytical letters》2012,45(7):1173-1183
Abstract

An amperometric glucose biosensor based on the detection of the reduction of oxygen has been developed by combining an aminated glassy carbon electrode with a polystyrene (PS) membrane containing glucose oxidase (GOD) micelles. The structure of GOD micelles contained in PS membrane was observed by scanning electron microscope. The micelle has a roughly spherical shape, and the enzyme colony is contained inside the micelle. This glucose sensor exhibited good sensitivity with short response time (within 2 min). A good linear relationship was observed in the concentration range of 0.2 mM to 2.6 mM when the applied potential was ? 0.45 V vs. Ag/AgCl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号