首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A urea microsensor was fabricated by immobilizing urease at the tip (10-μm diameter) of a rapidly responding ammonia gas microelectrode based on antimony. The construction and evaluation of both the urea senson and the ammonia electrode are described in detail. The urea sensor responds to 10?2?10?4 M urea in 30–45 s.  相似文献   

2.
An optical biosensor for urea based on urease enzyme immobilised on functionalised calcium carbonate nanoparticles (CaCO3-NPs) was successfully developed in this study. CaCO3-NPs were synthesised from discarded cockle shells via a simple and eco-friendly approach, followed by surface functionalisation with succinimide ester groups. The fabricated biosensor is comprised of two layers. The first (bottom layer) contained functionalised NPs covalently immobilised to urease, and the second (uppermost layer) was alginate hydrogel physically immobilised to the pH indicator phenolphthalein. The biosensor provided a colorimetric indication of increasing urea concentrations by changing from colourless to pink. Quantitative urea analysis was performed by measuring the reflectance intensity of the colour change at a wavelength of 633.16 nm. The determination of urea concentration using this biosensor yielded a linear response range of 30–1000 mM (R2 = 0.9901) with a detection limit of 17.74 mM at pH 7.5. The relative standard deviation of reproducibility was 1.14%, with no signs of interference by major cations, such as K+, Na+, NH?+, and Mg2+. The fabricated biosensor showed no significant difference with the standard method for the determination of urea in urine samples.  相似文献   

3.
A new approach was developed for urea determination where a thin film of silicalite and zeolite Beta deposited onto gold electrodes of a conductometric biosensor was used to immobilize the enzyme. Biosensor responses, operational and storage stabilities were compared with results obtained from the standard membrane methods for the same measurements. For this purpose, different surface modification techniques, which are simply named as Zeolite Membrane Transducers (ZMTs) and Zeolite Coated Transducers (ZCTs) were compared with Standard Membrane Transducers (SMTs). Silicalite and zeolite Beta with Si/Al ratios 40, 50 and 60 were used to modify the conductometric electrodes and to study the biosensor responses as a function of changing zeolitic parameters. During the measurements using ZCT electrodes, there was no need for any cross-linker to immobilize urease, which allowed the direct evaluation of the effect of changing Si/Al ratio for the same type of zeolite on the biosensor responses for the first time. It was seen that silicalite and zeolite Beta added electrodes in all cases lead to increased responses with respect to SMTs. The responses obtained from ZCTs were always higher than ZMTs as well. The responses obtained from zeolite Beta modified ZMTs and ZCTs increased as a function of increasing Si/Al ratio, which might be due to the increased hydrophobicity and/or the acid strength of the medium.  相似文献   

4.
Fluorescent microspheres consisting of a conjugated phenylenevinylene 3B2B doped with a fluorenone derivative DSFO were prepared by a reprecipitation method. The DSFO-doped 3B2B microspheres (DMPs) exhibited significantly reduced fluorescence from 3B2B (donor) and strongly enhanced emission from DSFO (acceptor), which is highly sensitive to the concentration of metalloprotein.  相似文献   

5.
A new and simple preparation procedure for fluorophore absorber pairs which enable optical sensing of ammonia is reported. In ion pairs formed between organoruthenium complexes (fluorophore) and triphenylmethane dyes (absorber), a deprotonation of the absorber leads to an absorbance band which overlaps the emission of the fluorophore whereby both the fluorescence intensity and the fluorescence lifetime of the fluorophore are altered. Dissolving these ion pairs in polymer materials such as poly (vinyl chloride) or porous glass obtained by the sol–gel process results in membranes which respond to ammonia. Plasticized PVC membranes containing the fluorophore-absorber pair and coated with a PTFE layer allow a continuous assay of dissolved ammonia in the range of 0.01 to 25 mg l−1. Membranes composed of the ion pair dissolved in a sol–gel-based glass and coated with PTFE respond to ammonia with a similar sensitive range and a limit of detection of 0.01 mg l−1.  相似文献   

6.
This paper reports the application of Raman and Fourier transform infrared (FTIR) spectroscopy techniques for the investigation of molecular restructuring of polypyrrole (PPy) nanostructures in ammonia environment. Different types of PPy nanostructures such as nanofibers, nanorods, and nanoparticles were prepared in the presence of different surfactants such as cetyltrimethyl ammonium bromide (CTAB), methyl orange, sodium dodecyl sulfate, and Triton X-100, respectively. The prepared nanostructures were characterized for structural, morphological, and the gas sensing properties. The gas sensing reponse towards ammonia is estimated from change in the surface resistance of the sample. PPy nanofibers prepared in the presence of CTAB have a diameter of ∼63 nm and the gas sensing response of ∼18%, whereas, PPy nanoparticles prepared in the presence of Triton X-100 have a diameter of ∼94 nm and the lowest gas sensing response (6.5%) at 100 ppm level of ammonia. The mechanism of gas sensing has been investigated through vibrational (Raman and FTIR) spectroscopy techniques performed in the presence of analyte (ammonia) gas. The charge compensation via proton transfer process in ammonia environment is found to be main cause for the gas sensing response in the PPy nanostructures.  相似文献   

7.
In this study, a novel, sensitive electrochemical enzyme-based biosensor for urea detection was presented. This biosensor combines a three-electrode system consisting of a classic Glassy Carbon Electrode (GCE) as the working electrode, a platinum counter electrode, and Ag/AgCl as the reference electrode. To construct this urea platform, a GCE was modified with a polyaniline (PANi) film. Then, bacterial urease from Proteus mirabilis was immobilized on the modified GCE (Pm-Urease-PANi-GCE). For the characterization of surface modification, Cyclic Voltammetry (CV) and Scanning Electron Microscope (SEM) were applied, while the Square Wave Voltammetry (SWV) technique was performed for urea detection. The main analytical characteristics of the Pm-Urease-PANi-GCE biosensor showed a good linear range from 0.1 to 10 mM of urea, a limit of detection (LOD) of 0.1 mM, a Michaelis-Menten Km of 0.23 mM, and a sensitivity value 46 μA/mM/cm2. This biosensor allows the detection of urea in solutions, and it could be improved for further medical, environmental, or engineering applications.  相似文献   

8.
A unique urea biosensor construction based on the direct covalent attachment of urease onto a polymeric electron transfer mediator, poly(glycidyl methacrylate-co-vinylferrocene)-coated electrode is described. Amperometric response was measured as a function of urea concentration, at a fixed potential of +0.35 V vs. Ag/AgCl in phosphate-buffered saline (pH 7.0). Covalent immobilization of the urease directly to the functionalized ferrocene copolymer surface produced biosensors with a short response time (about 3 s) and provided low detection limits. The stability, reusability, pH, and temperature response of the biosensor, besides its kinetic parameter, were also studied.  相似文献   

9.
Improving the reproducibility of electrochemical signal remains a great challenge over the past decades. In this work, i-motif oligonucleotide probe-based electrochemical DNA (E-DNA) sensor is introduced for the first time as a regenerated sensing platform, which enhances the reproducibility of electrochemical signal, for label-free detection of glucose and urea. The addition of glucose or urea is able to activate glucose oxidase-catalyzed or urease-catalyzed reaction, inducing or destroying the formation of i-motif oligonucleotide probe. The conformational switch of oligonucleotide probe can be recorded by electrochemical impedance spectroscopy. Thus, the difference of electron transfer resistance is utilized for the quantitative determination of glucose and urea. We further demonstrate that the E-DNA sensor exhibits high selectivity, excellent stability, and remarkable regenerated ability. The human serum analysis indicates that this simple and regenerated strategy holds promising potential in future biosensing applications.  相似文献   

10.
As a result of this study, a new and simple method was proposed for the fabrication of an ultra sensitive, robust and reversible ammonia gas sensor. The sensing mechanism was based upon the change in electrical resistance of a graphene aerogel as a result of sensor exposing to ammonia. Three-dimensional graphene hydrogel was first synthesized via hydrothermal method in the absence or presence of various amounts of thiourea. The obtained material was heated to obtain aerogel and then it was used as ammonia gas sensor. The materials obtained were characterized using different techniques such as Fourier transform infra red spectroscopy (FT-IR), thermal gravimetric analysis (TGA), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The thiourea-treated graphene aerogel was more porous (389 m2 g−1) and thermally unstable and exhibited higher sensitivity, shorter response time and better selectivity toward ammonia gas, compared to the aerogel produced in the absence of thiourea. Thiourea amount, involved in the hydrogel synthesis step, was found to be highly effective factor in the sensing properties of finally obtained aerogel. The sensor response time to ammonia was short (100 s) and completely reversible (recovery time of about 500 s) in ambient temperature. The sensor response to ammonia was linear between 0.02 and 85 ppm and its detection limit was found to be 10 ppb (3S/N).  相似文献   

11.
We have investigated the fast ethylamine gas sensing of 2-chloro-3,5-dinitrobenzotrifluoride(CDBF) loaded poly(acrylonitrile) nanofiber based on an intermolecular charge-transfer complexation.Reversible response and recovery were achieved using alternating gas exposure.This system shows a fast ethylamine gas sensing within 0.4 s.  相似文献   

12.
13.
The electropolymerized toluidine blue film deposited on the glassy carbon electrode show amperometrically detectable pH sensitivity. This feature of polytoluidine blue (PTOB) film was used for a construction of an amperometric urea biosensor. We have observed a linear shift of the formal redox potential with increasing pH value between 4 and 8 giving the slope of 81 mV(Delta) pH(-1). Polytoluidine blue film has had a significantly increased stability and higher electrochemical activity compared to the adsorbed monomeric dye. The polytoluidine blue urea biosensor has been operating at a working potential of -200 mV vs. SCE. The sensitivity of the biosensor was 980 nA mM(-1) cm(-2). The biosensor showed linearity in concentration range up to 0.8 mM with the detection limit of 0.02 mM (S/N=3).  相似文献   

14.
Dubas ST  Pimpan V 《Talanta》2008,76(1):29-33
Silver nanoparticles synthesized by a reagent less method involving only UV radiation have been used in colorimetric assay for the detection of ammonia in solution. The silver nanoparticles were synthesized by the exposure of a silver nitrate solution to a low-power UV source in the presence of poly(methacrylic acid) (PMA), which acted both as reducing and capping agent. The synthesis of the silver nanoparticles was studied by monitoring the changes in position and amplitude of the localized plasmon resonance (LSPR) band using UV-vis spectroscopy. The morphology of the particles was studied using transmission electron microscopy which confirmed the formation of spherical particles with an average particle size around 8 nm. Interestingly, the silver nanoparticles solution was found to display a strong color shift from purple to yellow upon mixing with increasing concentration of ammonia ranging from 5 to 100 ppm. Hence, the nanoparticles prepared with this method could be used as colorimetric assay for sensing applications of ammonia in water.  相似文献   

15.
Pang C  Zhu Y  Gao H  Dong Y  Lu J 《The Analyst》2011,136(4):841-846
A new kind of biosensor for the detection of urea with a high selectivity, sensitivity and wide detection range was designed based on the secretion of carnation petals cells paste covered over a graphite-epoxy composite basic electrode surface. The carnation petal paste from mashed fresh carnation petals was tightly fixed on the basic electrode surface with Teflon thin film to keep it in contact with the electrode surface. Urea in aqueous solution was detected by differential pulse voltammetry based on the oxidation peak current at 0.316 V (vs. SCE) of the secreted species of carnation petal cells during the mashing process, which interacts with urea molecules and results in the decrease of the oxidation peak current. The oxidation peak current decreases linearly with the logarithm of urea concentration in the range of 1.3 × 10(-16)-4.57 × 10(-8) M and 3.4 × 10(-7)-1.3 × 10(-1) M with a detection limit of 7.5 × 10(-16) M. The biosensor was characterized by electrochemistry and fluorescent spectrometry, and applied to the determination of urea in waste water from a river around Shenyang Normal University campus with a recovery of 104.5% (RSD is 5.00%). The presence of larger amounts of ammonium ion and nitrate ion up to the molar ratio of 10(4) do not interfere with the urea detection.  相似文献   

16.
17.
Cholesterol oxidase (ChOx) has been immobilized onto conducting poly[2-methoxy,5-(2′-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV)/stearic acid (SA) Langmuir-Blodgett film transferred onto octadecanethiol (ODT) modified gold plate. The ChOx/MEH-PPV/SA LB film bioelectrode exhibits has been characterized by FT-IR, contact angle, and atomic force microscopy. The response of the ChOx/MEH-PPV/SA LB film bioelectrode carried out using differential pulse voltammetry (DPV) studies reveal linearity from 1.29 to 12.91 mM of cholesterol concentration and response time as 30 s. This ChOx/MEH-PPV/SA bioelectrode exhibits values of correlation coefficient as 0.9939, standard deviation as 0.0029 μA and limit of detection as 1.66 mM. UV-visible spectrophotometer studies reveal that 5.2 × 10−3 U of ChOx are actively working per cm2 area of ChOx/MEH-PPV/SA LB film bioelectrode and this bioelectrode is thermally stable upto 55 °C with reusability of about 60 times.  相似文献   

18.
Xie X  Suleiman AA  Guilbault GG 《Talanta》1991,38(10):1197-1200
A new fiber-optic biosensor for urea has been developed, based on immobilized urease coupled to a fluorescence ammonia sensor. The enzymatically generated ammonia diffuses through the membrane into a solution of the fluorescent pH indicator trisodium 8-hydroxypyrene-1,3,6-trisulfonate. The sensor has been successfully used for the determination of urea in serum samples, with results in good agreement with those reported by a local hospital. The proposed sensor is reversible and selective to urea. The ease of construction of the sensor tip offers the possibility of designing disposable tips for use in clinical applications.  相似文献   

19.
The dye Erythrosine B (which gives room-temperature phosphorescence, RTF) has been covalently bound to a silica-based amino-functionalized exchanger. The resulting material turned out to be extremely useful as a luminescent probe for oxygen. The photochemical properties and the analytical performance of the RTF probe have been studied by use of a gas flow-injection analysis system, which incorporates a convenient exponential dilution chamber for gas sample introduction. The possible origin of the non-linear Stern-Volmer quenching response observed is thoroughly discussed in terms of the quenching and lifetimes. The proposed sensing material is particularly suitable for measuring oxygen in gas mixtures at extremely low concentrations. The detection limit attained was 0.00006% (0.6 ppm) of oxygen in dry argon (making the system one of the more sensitive optosensors for oxygen published so far). A typical precision of ± 0.2%, at the 0.025% oxygen level, was achieved. Response times were less than 2 s for full signal change and no hysteresis effects were noticed. A possible mechanism for the observed oxygen RTF quenching in the new sensing material is proposed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号