首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Abstract— Microscopic energy transfer spectroscopy was established using mixed solutions of reduced nicotinamide adenine dinucleotide (NADH) and the mitochondrial marker rhodamine 123 (R123). This method was applied to probe mitochondrial malfunction of cultivated endothelial cells from calf aorta incubated with various inhibitors of specific enzyme complexes of the respiratory chain. Autofluorescence of the coenzyme NADH as well as energy transfer efficacy from excited NADH molecules (energy donor) to R123 (energy acceptor) were measured by time-gated fluorescence spectroscopy. Because intermo-Iecular distances in the nanometer range are required for radiationless energy transfer, this method is suitable to probe selectively mitochondrial NADH. Autofluorescence of endothelial cells usually exhibited a weak increase after specific inhibition of enzyme complexes of the respiratory chain. In contrast, pronounced and statistically significant changes of energy transfer efficacy were observed after inhibition of the same enzyme complexes. Detection of NADH and R123 in different nanosecond time gates following the exciting laser pulses enhances the selectivity and improves quantification of fluorescence measurements. Therefore, time-gated energy transfer spectroscopy is suggested to be an appropriate tool for probing mitochondrial malfunction.  相似文献   

2.
The photoreceptive extreme tip of the wheat coleoptile exhibits intense green-yellow fluorescence under UV light, suggesting the presence of UV-absorbing materials. Fluorescence spectra of the intact coleoptile tip and tip homogenate showed the presence of the known photoreceptor pigments flavin and carotene, and a preponderance of phenolic compounds. Absorption spectra and fluorescence spectra of various phenolic compounds showed close overlap with the absorption and fluorescence spectra of the wheat coleoptile tip homogenate. Fluorescence spectra of several phenolic compounds showed close overlap with the absorption bands of flavin, carotene and pterine, suggesting possible energy transduction from phenols to these photoreceptors. Excitation of gentisic acid and ferulic acid with 340 nm light in the presence of flavin showed enhancement of flavin fluorescence in a concentration- and viscosity-dependent fashion, indicating fluorescence resonance energy transfer between them and riboflavin. Furthermore, several phenolic compounds tested generated superoxide anion on excitation at 340 nm, suggesting that superoxide-dependent signal cascades could operate in a polyphenol-mediated pathway. Phenolic compounds thus may act as accessory photoreceptors bringing about excitation energy transfer to the reactive photoreceptor molecules, or they may take over the function of the normal photoreceptor in genetic mutations lacking the system, or both processes may occur. The responses of plants to UV-B and UV-A light in mutants may be explained in terms of various phenolics acting as energy transducers in photoreceptor functioning.  相似文献   

3.
Energy transfer between photoexcited flavin and cytochrome c has been investigated in order to estimate intermolecular forces between flavin and cytochrome c. The quenching of the fluorescence of flavin by cytochrome c excited at 372 nm was found to be much greater than that excited at 465 nm. This dependence of the quenching on the exciting wavelength is considered to be due to the “prerelaxational” fast energy transfer. From the analysis of the quenching of the fluorescence of FMN and lumiflavin by cytochrome c excited at 465 nm, it was concluded that 1) the quenching is mainly controlled by resonance energy transfer, and 2) the heterogeneous dispersion state of molecules due to electrostatic forces makes the critical transfer distance, R 0, of the resonance process longer than the real distance. For the quenching of the fluorescence of flavodoxin by cytochrome c, it was found that complex formation is a dominant process and is controlled to a great extent by electrostatic forces. Furthermore, fluorescence decay curves were measured by a single-photon counting method in order to estimate the dynamic processes of flavin fluorescence. The results also showed that the resonance process exists in the energy transfer between flavin and cytochrome c.  相似文献   

4.
《Chemical physics》2007,336(1):1-13
The phenothiazine–phenylene–isoalloxazine dyad, 3-methyl-10-[4-(10-heptyl-10H-phenothiazin-3-yl)-phenyl]-10H-benzo[g]pteridine-2,4-dione, dissolved in either dichloromethane or acetonitrile is characterized by absorption and emission spectroscopy. Absorption cross-section spectra, stimulated emission cross-section spectra, fluorescence quantum distributions, fluorescence quantum yields, and degrees of fluorescence polarisation are determined. The fluorescence decay is determined by time-resolved measurements. The dye photo-stability is investigated by observation of absorption spectral changes due to prolonged blue-light excitation. The absorption spectrum of the dyad resembles the superposition of the absorption of the isoalloxazine (flavin) moiety and of the phenylphenothiazine moiety. Photo-excitation of the flavin moiety causes fluorescence quenching by ground-state reductive electron transfer from phenylphenothiazine to isoalloxazine followed by charge recombination. Photo-excitation of the phenothiazine moiety causes (i) efficient excited-state oxidative electron transfer from phenothiazine to isoalloxazine with successive recombination, and (ii) moderate energy transfer followed by ground-state phenothiazine electron transfer and recombination.  相似文献   

5.
Clinical studies have shown that in vivo fluorescence spectroscopy can improve the diagnosis of cervical precancer. Recent work suggests that epithelial fluorescence increases, whereas stromal fluorescence decreases, with precancer. However, the microanatomic and biochemical sources of fluorescence in living cervical tissue have not yet been established. This study aims to characterize the origins of living normal and precancerous cervical fluorescence at microscopic levels using laser-scanning fluorescence confocal microscopy. Ten pairs of colposcopically normal and abnormal biopsies were obtained; transverse, 200 microm thick, short-term tissue cultures were prepared and imaged when viable with UV (351-364 nm) and 488 nm excitation before and after addition of the vital dye, Mitotracker Orange. In normal epithelium basal epithelial cells showed cytoplasmic fluorescence; parabasal, intermediate and superficial cells showed fluorescence only at the periphery of the cell. In low-grade precancers cytoplasmic fluorescence was visible in the bottom one-third of the epithelium; in high-grade precancers cytoplasmic fluorescence was visible throughout the lower two-thirds of the epithelium. Cytoplasmic fluorescence was colocalized with the MitoTracker probe and is attributed to mitochondrial reduced form of nicotinamide adenine dinucleotide at UV excitation and mitochondrial flavin adenine dinucleotide at 488 nm excitation. Stromal fluorescence originated from matrix fibers; with the development of precancer the density and fluorescence intensity of matrix fibers decrease. Autofluorescence properties of precancerous cervix reflect an increased number of metabolically active mitochondria in epithelial cells and a reduced stromal fluorescence, which can be an indicator for altered communication between precancerous epithelium and stroma. These changes can explain differences in in vivo fluorescence spectra of normal and precancerous cervical tissue.  相似文献   

6.
Evidence for the existence of a reactive triplet excited state of lumiflavin has been obtained by the flash-photolysis technique. The triplet state is formed in high yield on the irradiation of flavin solutions in water or chloroform by visible light, and it has been demonstrated that it can transfer its energy to a second molecular species. The flavin-sensitised oxidation of two purine nucleotides, adenylic and guanylic acids, has been studied by flash-photolysis and by long-term irradiation, and the results suggest a triplet-triplet mechanism for the transfer of energy from the excited flavin to the nucleotide. Approximate absorption spectra of the triplet state and of a semiquinone of the flavin have been calculated from the complex transient absorption curves observed on flashing the flavin solution. The triplet decays by a first-order process where k1= 1·1 × 10-3. The chemiluminescence spectrum of skatole is identical with the fluorescence spectrum of o-formamidoacetophenone in the same environment Similar results for 2,3-dimethylindole lead to the identification of the acylamide anion as the emitter in indole chemiluminescence. A peroxide ring cleavage excitation mechanism is proposed. 104 sec-1 and the semiquinone by a second-order process where k2= 0·75 × 109 1.m-1 sec-1. The rate constants and extinction coefficients obtained enable decay curves to be calculated which fit satisfactorily those measured with the kinetic-flash apparatus.  相似文献   

7.
Abstract— The effect of flavin structure variation upon the binding process of flavin to hen egg white riboflavin was studied using fluorescence methods for formylmethylflavin (FMF), riboflavin (RF) and flavomononucleotide (FMN).
Measurements of flavin fluorescence intensities (steady state and phase-sensitive) and lifetimes were performed in a variety of RBP concentrations and temperatures (4 to 40°C). No fluorescence of flavoproteins was detected, while the fluorescence of flavins was found to be quenched by RBP. The overall quenching process is dominated by the static quenching (about 88%) due to the flavoprotein complex formation in the ground state, presumably a charge transfer complex.  相似文献   

8.
The excitation energy transfer from meso-tetrakis(N-methylpyridinium-4-yl)porphyrin (TMPyP) to 3,3'-diethyl-2,2'-thiatricarbocyanine iodide (DTTCI) along the deoxyribonucleic acid (DNA) double strand was investigated by the steady-state absorption and fluorescence measurements and time-resolved fluorescence measurements. The steady-state fluorescence spectra showed that the near-infrared fluorescence of DTTCI was strongly enhanced up to 86 times due to the energy transfer from the excited TMPyP molecule in DNA buffer solution. Furthermore, we elucidated the mechanism of fluorescence quenching and enhancement by the direct observation of energy transfer using the time-resolved measurements. The fluorescence quenching of TMPyP chiefly consists of a static component due to the formation of complex and dynamic components due to the excitation energy transfer. In a heterogeneous one-dimensional system such as a DNA chain, it was proved that the energy transfer process only carries out within the critical distance based on the F?rster theory and within a threshold value estimated from the modified Stern-Volmer equation. The present results showed that DNA chain is one of the most powerful tools for nanoassemblies and will give a novel concepts of material design.  相似文献   

9.
Polarized steady-state fluorescence and fluorescence excitation spectra as well as time-resolved fluorescence for B-phycoerythrin (B-PE) from red algae, Porphyridium cruentum, embedded in polyvinyl stretched films were measured. The lifetimes of polarized fluorescence were analyzed using exponential components and fractal models. The interactions between various chromophores of the pigment-protein complexes investigated were discussed. The anisotropy of fluorescence excitation spectra differs from the anisotropy of absorption spectra and depends on the wavelength of observation. This shows that differently oriented chromophores take part in various paths of excitation energy transfer (ET) or change their excitation into heat with various efficiencies (or both). Also, analysis of time-resolved fluorescence measured in various spectral regions gives different polarized components of emission. Fractal analysis of lifetimes, done under supposition of the Foerster resonance ET mechanism, suggests different arrangements of energy donors and acceptors for molecules absorbing in different spectral regions. It shows that several fractions of differently oriented "forms" of chromophores exhibiting different spectral properties occur in B-PE complexes. Small changes in the orientation of the chromophores can be followed by modification of the path of excitation energy migration. Based on the results obtained a new reorientational mechanism of the State 1 --> State 2 transition was proposed: Even small conformational modifications of biliproteins, which could be caused in vivo by the change in the conditions of preillumination of bacteria, are able to modify the path of excitation ET. Such a reorientation may be responsible for the change in the partition of biliprotein excitation energy between photosystem II (PSII) and PSI (State 1 --> State 2 transition). The proposed mechanism needs further verification by the investigation of whole bacteria cells.  相似文献   

10.
Hybrid quantum mechanical-molecular mechanics (dynamics) were performed on flavin reductase (Fre) and flavodoxin reductase (Fdr), both from Escherichia coli. Each was complexed with riboflavin (Rbf) or flavin mononucleotide (FMN). During 50 ps trajectories, the relative energies of the fluorescing state (S1) of the isoalloxazine ring and the lowest charge transfer state (CT) were assessed to aid prediction of fluorescence lifetimes that are shortened due to quenching by electron transfer from tyrosine. The simulations for the four cases display a wide range in CT–S1 energy gap caused by the presence of phosphate, other charged and polar residues, water, and by intermolecular separation between donor and acceptor. This suggests that the Gibbs energy change (ΔG0) and reorganization energy (λ) for the electron transfer may differ in different flavoproteins.  相似文献   

11.
Polarized absorption, photoacoustic, fluorescence excitation and fluorescence emission spectra of phycobilisomes were measured when embedded in polyvinyl alcohol films. The phycobilisomes were isolated from the following organisms: Anabaena cylindrica, Nostoc punctiforma and Synechococcus elongatus. The ratio of photoacoustic spectra to absorption was taken as a measure of thermal dissipation of excitation energy. The isotropic samples and those oriented by the film stretching were investigated. The stretching of the sample strongly influences the efficiency of excitation energy transfer occurring among biliproteins in phycobilisomes, as is seen from the dramatic changes in the fluorescence and thermal dissipation spectra. The effect of stretching the film depends on the shape of phycobilisomes and on the strength of interactions between biliproteins in phycobilisomes.  相似文献   

12.
合成了叶啉与酞菁以共价键连接起来的双发色团分子。测定了它们的吸收光谱,荧光光谱,荧光寿命等。计算了分子内能量传递过程的效率(φEnT)及速率常数(κEnT)。结果表明:在稀溶液中,卟啉与酞菁等克分子混合时,观察不到分子间能量传递过程现象的发生;而双发色团分子的分子内能量传递过程则明显发生了,其效率(φEnT=13~70%)与速率常数(κEnT=1.2×107~2.0×108s-1)取决于分子的结构类型。电子转移与能量传递过程与介质性质有关。在极性溶剂中有利于电子转移过程的进行,而不利于能量传递过程;在非极性溶剂中,则有利于能量传递过程的进行,而不利于电子转移。 选择性激发酞菁发色团,观测到了只有电子转移发生的过程,其电子转移效率达到38%。  相似文献   

13.
We have applied the fluorescence upconversion technique to explore the electronic excitation energy transfer in unsymmetrical phenylene ethynylene dendrimers. Steady-state emission spectra show that the energy transfer from the dendrons to the core is highly efficient. Ultrafast time-resolved fluorescence measurements are performed at various excitation wavelengths to explore the possibility of assigning absorption band structures to exciton localizations. We propose a kinetic model to describe the time-resolved data. Independent of the excitation wavelength, a typical rise-time value of 500 fs is measured for the fluorescence in the dendrimer without an energy trap, indicating initial delocalized excitation. While absorption is into delocalized exciton states, emission occurs from localized states. When an energy trap such as perylene is introduced on the dendrimer, varying the excitation wavelength yields different energy-transfer rates, and the excitation energy migrates to the trap through two channels. The interaction energy between the dendrimer backbone and the trap is estimated to be 75 cm(-1). This value is small compared to the vibronic bandwidth of the dendrimer, indicating that the monodendrons and the energy trap are weakly coupled.  相似文献   

14.
Fluorescence Correlation Spectroscopy (FCS) was used to investigate the excited-state properties of flavins and flavoproteins in solution at the single molecule level. Flavin mononucleotide (FMN), flavin adenine dinucleotide (FAD) and lipoamide dehydrogenase served as model systems in which the flavin cofactor is either free in solution (FMN, FAD) or enclosed in a protein environment as prosthetic group (lipoamide dehydrogenase). Parameters such as excitation light intensity, detection time and chromophore concentration were varied in order to optimize the autocorrelation traces. Only in experiments with very low light intensity ( < 10 kW/cm2), FMN and FAD displayed fluorescence properties equivalent to those found with conventional fluorescence detection methods. Due to the high triplet quantum yield of FMN, the system very soon starts to build up a population of non-fluorescent molecules, which is reflected in an apparent particle number far too low for the concentration used. Intramolecular photoreduction and subsequent photobleaching may well explain these observations. The effect of photoreduction was clearly shown by titration of FMN with ascorbic acid. While titration of FMN with the quenching agent potassium iodide at higher concentrations ( > 50 mM of I-) resulted in quenched flavin fluorescence as expected, low concentrations of potassium iodide led to a net enhancement of the de-excitation rate from the triplet state, thereby improving the fluorescence signal. FCS experiments on FAD exhibited an improved photostability of FAD as compared to FMN: As a result of stacking of the adenine and flavin moieties, FAD has a considerably lower triplet quantum yield. Correlation curves of lipoamide dehydrogenase yielded correct values for the diffusion time and number of molecules at low excitation intensities. However, experiments at higher light intensities revealed a process which can be explained by photophysical relaxation or photochemical destruction of the enzyme. As the time constant of the process induced at higher light intensities resembles the diffusion time constant of free flavin, photodestruction with the concomitant release of the cofactor offers a reasonable explanation.  相似文献   

15.
The aim of this study was to test the hypothesis that glucose can be monitored non-invasively by measuring NAD(P)H-related fluorescence lifetime of cells in an in vitro cell culture model. Autofluorescence decay functions were measured in 3T3-L1 adipocytes by time-correlated single-photon counting (excitation 370nm, emission 420-480nm). Free NADH had a two-exponential decay but cell autofluorescence fitted best to a three-exponential decay. Addition of 30mM glucose caused a 29% increase in autofluorescence intensity, a significantly shortened mean lifetime (from 7.23 to 6.73ns), and an increase in the relative amplitude and fractional intensity of the short-lifetime component at the expense of the two longer-lifetime components. Similar effects were seen with rotenone, an agent that maximizes mitochondrial NADH. 3T3-L1 fibroblasts stained with the fluorescent mitochondrial marker, rhodamine 123 showed a 16% quenching of fluorescence intensity when exposed to 30mM glucose, and an increase in the relative amplitude and fractional intensity of the short lifetime at the expense of the longer lifetime component. We conclude that, though the effect size is relatively small, glucose can be measured non-invasively in cells by monitoring changes in the lifetimes of cell autofluorescence or of a dye marker of mitochondrial metabolism. Further investigation and development of fluorescence intensity and lifetime sensing is therefore indicated for possible non-invasive metabolic monitoring in human diabetes.  相似文献   

16.
Single- and two-step fluorescence resonance energy transfer (FRET) was investigated between laser dyes rhodamine 123 (R123), rhodamine 610 (R610), and oxazine 4 (Ox4). The dye molecules played the role of molecular antennas and energy donors (ED, R123), energy acceptors (EA, Ox4), or both (R610). The dye cations were embedded in the films based on layered silicate laponite (Lap) with the thickness of several μm. Optically homogeneous films were prepared directly from dye/Lap colloids. Dye concentration in the films was high enough for FRET to occur but sufficiently low to prevent the formation of large amounts of molecular aggregates. The films were characterized by absorption and fluorescence spectroscopies, and their optical properties were compared with colloid precursors and dye aqueous solutions. The phenomenon of FRET was confirmed by means of steady-state and time-resolved fluorescence spectroscopies. Significant quenching of ED emission in favor of the luminescence from EA molecules was observed. FRET led to the decrease in the lifetimes of excited states of ED molecules. Molecular orientation of dye molecules was determined by polarized absorption and fluorescence spectroscopies. Almost parallel orientation with respect to silicate surface (~30°) was determined for all fluorescent species of the dyes. Theoretical model on relationship between anisotropy and molecular orientation of the fluorophores fits well with measured data. The analysis of anisotropy measurements confirmed the significant role of FRET in the phenomenon of light depolarization.  相似文献   

17.
Abstract— A detailed experimental study of the effect of intensity of a 6 ps excitation pulse on the decay kinetics and yield from phycobilisomes (PBsomes) is presented. The fluorescence from the c-phycoerythrin (PE) emission from PBsomes was found to decay as a single exponential with a time of 31 ± 4ps for an excitation intensity <1014 photons/cm2 per pulse. The risetime of the c-phycocyanin (PC) and allophycocyanin (APC) emission from PBsomes was found to be 34 ± 13 ps. Therefore, at low excitation intensities, the energy transfer time between the constituent phycobiliproteins, PE and PC, is measured to be 34 ± 13ps from the fluorescence decay time of PE and the fluorescence risetime of the PC and APC emission. The fluorescence yield from the PE emission component in PBsomes was found to be intensity dependent for excitation intensities >1014 photons/cm2. The decrease in yield with increased intensity in this case occurred at a higher intensity than in the isolated phycobiliprotein PE. The fluorescence yield of the PC and APC emission component was also found to decrease markedly with increasing excitation intensity. This is in contrast to the case of the isolated phycobiliprotein APC which showed only a slight quenching of the fluorescence. The higher quenching observed for the APC emission in the PBsome evidences the higher effective absorption of APC via energy transfer from PE to PC and APC.  相似文献   

18.
Abstract— The weak and reversible binding of the antifungal drug, griseofulvin (GF), to calf thymus DNA has been demonstrated by difference spectroscopy and the quenching of the fluorescence of GF by DNA observed. The value of K n was determined to be 800 M -1by fluorescence quenching titration. Adenosine and guanosine also exhibit difference spectra with GF and quench GF fluorescence indicating that they may be the site of both binding and energy transfer. The in vitro photosensitization of DNA by griseofulvin is shown to occur. It is proposed that the clinically observed in vivo photosensitizing action of griseofulvin may result from binding followed by excitation energy transfer and that this may also be important in the antifungal activity of the drug.  相似文献   

19.
The dependence of autofluorescence properties on the metabolic and functional engagement and on the transformation condition was studied on single cells. Normal Galliera rat fibroblasts at low subculture passage (cell strain), at high subculture passage (stabilized cell line), and transformed cell line derived from a rat sarcoma were used as a cell model. The study was performed by microspectrofluorometric and fluorescence imaging technique. The autofluorescence properties of cells were studied by excitation at two wavelengths, namely 366 nm and 436 nm, that are known to favor the emission of different fluorophores. Spectral shape analysis indicated that under excitation at 366 nm autofluorescence is ascribable mainly to coenzyme molecules, particularly to reduced pyridine nucleotides, while under excitation at 436 nm, flavin and lipopigment emission is favored. The energetic metabolic engagement of the different cell lines was analyzed in terms both of parameters related to anaerobic-aerobic pathways (biochemical assay) and of mitochondrial features (supravital cytometry). The results showed that the cell strain and the stabilized and transformed cell lines can be distinguished from one another on the basis of both overall fluorescence intensity and the relative contributions of spectral components. These findings indicated a relationship between autofluorescence properties and energetic metabolism engagement of the cells that, in turn, is dependent on the proliferative activity and the transformed condition of the cells. In that it is a direct expression of the energetic metabolic engagement, autofluorescence can be assumed as an intrinsic parameter of the cell biological condition, suitable for diagnostic purposes.  相似文献   

20.
Porphyrin quinones (P-Qs), covalently linked via different aliphatic bridges, have been synthesized and studies in their (porphyrin) cationic and (semiquinone) anionic radical states by EPR, ENDOR and TRIPLE resonance techniques. Electron transfer (ET) from the porphyrin donor to the quinone acceptor could be observed by time-resolved picosecond fluorescence spectroscopy (singlet ET) and by time-resolved EPR spectroscopy (triplet ET) in isotropic fluid solution and in anisotropic media (liquid crystals and reversed micelles). Steady-state in situ photoexcitation of P-Qs in CTAB cationic reversed micelles yielded the corresponding semiquinone radical anions. In TRITON X-100 reversed micelles both the radical cation of the porphyrin and the radical anion of the semiquinone could be detected, which occured in complete emission. In covalently linked porphyrin flavins ET from the photoexcited porphyrin fragment to the flavin and, in addition, energy transfer from the photoexcited flavin to the porphyrin could be observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号