首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Complete phase diagrams for mixtures of low-density polyethylene with p- and m-xylene are plotted by optical means in developing the concept of which partially crystalline polymers are microstructured liquids. It is shown that in contrast to the ones presented in the literature, both diagrams contain the solubility boundary curve of the low-molecular weight component in the polymer, above which the polyethylene has the structure of a single-phase gel (crosslinks formed by crystallites and amorphous regions saturated with xylene). At the figurative point on the diagrams, a situation is observed in which the dissolution of all the liquid contained in the initial two-phase system in the polymer is accompanied by its simultaneous complete amorphization. The parameters of the figurative point allow us to estimate the thermodynamic affinity of different alkylbenzenes toward polyethylene.  相似文献   

2.
High-density polyethylene-based nanocomposites were prepared through a melt compounding process by using surface functionalized fumed silica nanoparticles in various amounts, in order to investigate their capability to improve both mechanical properties and resistance to thermal degradation. The fine dispersion of silica aggregates led to noticeable improvements of both the elastic modulus and of the stress at yield proportionally to the filler content, while the tensile properties at break were not impaired even at elevated filler content. Thermogravimetric analysis showed that the selected nanoparticles were extremely effective both in increasing the decomposition temperature and in decreasing the mass loss rate, even at relatively low filler loadings. The formation of a char enriched layer, limiting the diffusion of the oxygen through the nanofilled samples, was responsible of noticeable improvements of the limiting oxygen index, especially at elevated silica loadings. In contrast with commonly reported literature results, cone calorimeter tests also revealed the efficacy of functionalized nanoparticles in delaying the time to ignition and in decreasing the heat release rate values. Therefore, the addition of functionalized fumed silica nanoparticles could represent an effective way to enhance the flammability properties of polyolefin matrices even at low filler concentrations.  相似文献   

3.
The thermal properties of chlorosulfonated polyethylene (CSM), which was prepared via gas–solid phase method, were studied in this article. The thermal curves were completely tested by differential thermal analysis, thermogravimetry, and differential thermogravimetry. The results showed that CSM 3550 and CSM 3570 prepared by gas–solid phase method had more excellent thermal properties (high initial/final temperature of degradation) than those via solution method, due to the uniform chlorine distribution of them in macromolecular chain. The differential scanning calorimetry curves showed that the transitions of CSM 3550 and CSM 3570 from glassy to the elastic state were also higher than those via solution method. Particularly, CSM 3570 was amorphous and no clear melting peak was observed during the melting process.  相似文献   

4.
《Fluid Phase Equilibria》1999,155(1):57-73
A solid–liquid equilibrium (SLE) model is developed on the basis of an equation of state referred to as copolymer SAFT. This SLE model is demonstrated for hydrocarbon solutions containing totally and partially crystallizable solutes. Initially regressed and tested on the solubility data for naphthalene, normal-alkane, and polyethylene, this model is used in a sensitivity study to understand the effects of crystallizability, melting temperature, molecular weight, and pressure on solid–liquid and liquid–liquid transitions of polyethylene in subcritical and supercritical propane.  相似文献   

5.
Nafion® impregnated Solupor®, microporous UHMWPE film, (N-PE), Nafion®117 (N117) and a membrane prepared using a DE2020 Nafion® dispersion (DE2020) were characterized with respect to their swelling degree (SD), methanol cross-over, proton conductivity and DMFC performance at various methanol concentrations in order to understand the effect of impregnation of an ion-conductive polymer membrane to the fuel cell performance.  相似文献   

6.
The mechanical properties and heat shrinkability of electron beam crosslinked polyethylene–octene copolymer were studied. It was found that gel content increases with increased radiation dose. The analysis of results by the Charlesby–Pinner equation revealed that crosslinking was dominant over chain scission upon irradiation. Formation of a crosslinked structure in the electron beam irradiated sample was confirmed by the presence of a plateau of dynamic storage modulus above the melting point of the polymer. Wide-angle X-ray diffraction revealed that there was little change in crystallinity for the irradiated samples, indicating that radiation crosslinking occurs in the amorphous region of the polymer. The tensile modulus increases, whereas the elongation at break decreases with increased radiation dose. The heat shrinkability of the material increased with an increased radiation dose because the radiation-induced crosslinks serve as memory points during the shrinking process.  相似文献   

7.
Soluplus® is a graft copolymer, with PEG and vinylcaprolactam/vinyl acetate side chains, recently available as excipient used to promote fast drug release in pharmaceutical dosage forms and as solubility enhancer. Despite this copolymer is reported to be able to act as a thickening additive and even as gelling agent as a function of temperature, there is a lack of information about the physical–chemical properties of its water dispersions. Thus, the aim of this paper is to investigate the influence of Soluplus® concentration and experimental temperature on the modification of the rheological properties of Soluplus® water dispersions. The results clearly indicated the influence of both the studied parameters and of their interactions on the Soluplus® thickening ability. Although some systems appear gel by human perception at 37 °C, the mechanical spectra demonstrated the lack of the formation of a tridimensional network structure. Overall, in all the analyzed temperatures and concentrations, the systems always behave as a “rheological” dilute or semidilute polymer solution.  相似文献   

8.
The dynamic properties of polyethylene glycol (PEG) molecules on the solid–liquid interface oscillating at MHz were investigated using the quartz crystal microbalance (QCM). The number-average molecular weights (Mn) of the PEG molecules were systematically varied over 4 orders of magnitude. This study makes it clear that the series-resonant frequency shift, ΔF, of the QCM against the square root of the density–viscosity product of the PEG solution is linear and has the intercept. Moreover, systematical analysis reveals that the ΔF slope rapidly decreases with Mn and that the ΔF intercept becomes constant above 4.0 × 103 g mol−1. As a result, those reveal that the resonant length of the PEG molecule moving with the oscillating plate of 9 MHz is 54.2 Å. We also find that the behaviors of ΔF due to Mn are mainly caused by the length of the PEG molecule.  相似文献   

9.
This article describes the test results of thermal properties and flammability of the unconventionally cross-linked blends of chlorosulfonated polyethylene (CSM) and butadiene–styrene rubber (SBR) by means of zinc oxide or nano-zinc oxide. The thermal curves have been interpreted from the point of view of the chemical transitions of elastomers and their blends. It has been found that the content of combined chlorine in CSM exerts a significant influence on the cross-linking kinetics of CSM/SBR blends, their thermal properties and flammability.  相似文献   

10.
Lipases from Burkholderia cepacia were encapsulated using polyethylene glycol (PEG, M w 1500) at various concentrations (0.5–3.0 %, w/v) as an additive during the sol–gel immobilisation process. Matrixes immobilized in the presence and absences of additives were characterized by thermal analysis [thermogravimetric (TG) and differential scanning calorimetry (DSC)], scanning electron microscopy (SEM), enzymatic activity, and total activity recovery yield (Ya). The addition of PEG increased the activity values, with Ya just above 1.0 % (w/v) in the presence of PEG. The additional of 1.0 % (w/v) PEG increased enzyme activity from 33.98 to 89.91 U g?1 and the values of recovery yield were 43.0–91.4 %, compared to values of the samples without PEG. PEG enhanced the thermal stability of the matrix structure in the temperature range 50–200 °C, as confirmed by TG and DSC analyses. This was influenced by the presence of water bound to the matrix. The SEM micrographs clearly showed an increase in the number of deposits on the material surface, producing matrices with greater porosity.  相似文献   

11.
Cd-doped TiO2 nanoparticles have been obtained by polyethylene glycol-assisted sol–gel synthesis and characterized by powder X-ray diffraction, energy dispersive X-ray analysis, high-resolution scanning electron microscopy and UV–visible diffuse reflectance, photoluminescence and impedance spectroscopies. Use of polyethylene glycol as templating agent provides club-shaped particles. Doping TiO2 with Cd decreases the average crystallite size and charge transfer resistance, increases the capacitance, and leads to blue emission. Cd-doping enhances the visible light photocatalytic disinfection of bacteria but not dye degradation.  相似文献   

12.
Transparent and ionic conductive polymeric electrolytes have been prepared through sol–gel method by adding titanium isopropoxide into an acidic polyethylene glycol (PEG) solution. After hydrolysis and condensation processes, new associations between titanium cations and ether oxygen atoms of PEG have been formed according to Fourier-transform infrared spectroscopy. Thermogravimetric analysis results of these hybrid materials indicate a better thermal stability with a less polydispersion of the molecular mass distribution in comparison with PEG. For the purpose of electrochromic or photoelectrochromic device applications, LiI was added into the hybrid materials to form solvent-free polymeric electrolytes. Optical transmittance spectra of these electrolytes show a red shift of the cutoff wavelength as a function of titanium isopropoxide percentage in the original sol–gel solutions. It is also observed that the amount of hydroxyl groups in the hybrid materials was reduced in comparison with the PEG one. This makes electrical conductivity of the hybrid electrolytes with LiI salt insensitive to humidity and solvents, which was about 2 × 10-4 Ω−1 cm−1 at room temperature. A solid WO3-based electrochromic device with the hybrid electrolyte keeps the same optical transmittance value after 1,000 cycles of switching polarization potentials between −1 and +1 V.  相似文献   

13.
The polypyrrole–LiFePO4 composites were synthesized by simple chemical oxidative polymerization of pyrrole (Py) monomer directly on the surface of LiFePO4 particles. Properties of resulting polypyrrole–LiFePO4 (PPy-LiFePO4) samples (especially conductivity) are strongly affected by the preparation technique, polymer additives, and conditions during synthesis. For increasing of PPy-LiFePO4 conductivity, we used polyethylene glycol (PEG) as additive during polymerization. The electrochemical behavior of the samples was examined by cyclic voltammetry and electrochemical impedance spectroscopy. It was found that PPy/PEG composite polymer decreased the particle to particle contact resistance. Impedance measurements showed that the coating of PPy/PEG significantly decreases the charge transfer resistance of LiFePO4 electrodes.  相似文献   

14.
We report solution properties of the blend solutions of poly(vinyl alcohol) (PVA) and poly(ethylene glycol) (PEG)–POSS telechelic and its corresponding hybrid nanofibers prepared by electrospinning. The morphologies, microstructures, and wettability of the resulting PVA/PEG3.4k–POSS hybrid nanofibers are studied. The morphologies of the resultant PVA/PEG3.4k–POSS nanofibers are regular with the fiber diameter ranging from 610 ± 110 to 810 ± 280 nm. When the content of PEG3.4k–POSS telechelic increases above 20 wt.%, the beaded fiber morphologies are observed due to severe aggregations of the PEG3.4k–POSS telechelics as well as increased viscosity at higher concentration. In addition, the solution properties of pure PEG3.4k–POSS telechelic solution (ca. 3–5 wt.%) and PVA/PEG3.4k–POSS solutions blended with PVA are explored, and found to show the reversible turbid-to-transparent transition behavior with respect to the solution temperature. Water contact angle measurement of the PVA/PEG3.4k–POSS nanofiber membranes demonstrates an enhanced hydrophobic nature due to the incorporated POSS moieties.  相似文献   

15.
A novel method is proposed for the extraction-thermal lens quantification of cobalt with Nitroso-R-Salt based on the distribution of the colored complex in a two-phase aqueous system on the basis of poly-ethylene glycol (PEG) and an ammonium sulfate solution followed by its thermal lens detection in the extract. The limit of detection is 0.3 μM (20 ng/mL); the lower limit of the analytical range is 0.7 μM (40 ng/mL); the relative standard deviation for the concentrations 1–50 μM makes 1–3% (n = 6, P = 0.95). In the determination of cobalt by spectrophotometry under the same conditions, the detection limit is 10 μM (0.6 μg/mL) and the lower limit of the analytical range is 40 μM (2.5 μg/mL). The precision of thermal lens measurements in PEG solutions is higher in comparison to that in aqueous ones because of the weaker interference of convection in aqueous solutions of PEG.  相似文献   

16.
Polyethylene glycol (PEG) is an important and popular phase change material (PCM), but is not a good antistatic material, which would cause the accumulation of static electricity and electrostatic discharge when used for the thermal energy storage and thermal management of electrical devices. Herein, we prepared a PEG-based solid–solid PCM (SSPCM) with good antistatic property by introducing an ionic liquid onto the macromolecular chains. This SSPCM is in solid state even at 90°C, avoiding the leakage issue of pure PEG. Its latent heat values in the melting and solidifying processes are 56.2 and 30.6 J g−1, respectively. Additionally, this SSPCM has good thermal stability and thermal reliability for thermal storage and thermal management according to thermogravimetric and thermal cycling tests. The volume- and surface resistivity of the SSPCM at ambient temperature are 108.87 Ω m and 108.92 Ω, respectively, showing good antistatic performance.  相似文献   

17.
Photo-oxidative degradation of quenched samples of linear low density (LLD), medium density (MD) and two kinds of high density (HD) polyethylene (PE) films was studied using a medium-pressure mercury lamp. Greater amounts of crosslinking and build up of oxidation products were noticed in LLDPE than the other samples. The primary products of interaction between dienes and oxygen are considered to participate in the initiation of the photo-oxidation reactions. Using the FT-IR difference spectrum technique, the amount of branch concentration in the photo-irradiated PE samples was determined. Oxidation damage at the boundary region between crystalline and amorphous phases is considered to be important in determining the embrittlement time.  相似文献   

18.
Solid composite polymer electrolytes consisting of polyethylene oxide (PEO), LiClO4, and porous inorganic–organic hybrid poly (cyclotriphosphazene-co-4, 4′-sulfonyldiphenol) (PZS) nanotubes were prepared using the solvent casting method. Differential scanning calorimetry and scanning electron microscopy were used to determine the characteristics of the composite polymer electrolytes. The ionic conductivity, lithium ion transference number, and electrochemical stability window can be enhanced after the addition of PZS nanotubes. The electrochemical impedance showed that the conductivity was improved significantly. Maximum ionic conductivity values of 1.5 × 10−5 S cm−1 at ambient temperature and 7.8 × 10−4 S cm−1 at 80 °C were obtained with 10 wt.% content of PZS nanotubes, and the lithium ion transference number was 0.35. The good electrochemical properties of the solid-state composite polymer electrolytes suggested that the porous inorganic–organic hybrid polyphosphazene nanotubes had a promising use as fillers in SPEs and the PEO10–LiClO4–PZS nanotube solid composite polymer electrolyte might be used as a candidate material for lithium polymer batteries.  相似文献   

19.
Size-exclusion chromatography with multi-angle laser light scattering (SEC-MALLS) and acid–base titration were used to determine the molecular weight of a polyethylene glycol with low molecular weight. All potential uncertainty factors for each measurement were evaluated using cause-effect diagrams. Weight analysis was applied to harmonize the two different measurement results. It was found that the main uncertainty sources of SEC-MALLS measurement arose from the dn/dc value, the calibration constant of the differential refractive index (DRI) detector, and the intermediate precision of the instrument, while the sample mass, the titration volume and the concentration of titrant contributed to the uncertainty of titration measurement. The weighted mean value of the two measurement results was taken as the molecular weight of the polyethylene glycol.  相似文献   

20.
We performed molecular dynamics simulations to analyze the initial stage of the thermal degradation of polyethylene, which is dominated by the random scission reaction. The simulations were initiated from structures that were taken from previously equilibrated snapshots of the amorphous polymer and of a free-standing thin film. Isolated chains were also used for comparison. Our systems were coupled to a thermal heat bath, and the effect of different coupling constants was studied. Rate of random scission increases as the strength of the temperature coupling increases. Rates of reaction are almost similar in thin films and the bulk, whereas the rates are much faster in isolated chains. Expansion of the free-standing thin film accompanies degradation, producing fragments of various sizes. Chains of higher molecular weights than the initial chains can be produced due to recombination of fragments during the expansion of thin films. The polydispersity index of the resulting fragments is higher in thin films compared to the bulk. The bonds at the low density portion of the thin films have a higher probability of being broken.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号