首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
Some research studies, many of which used quantitative methods, have suggested that graphics calculators can be used to effectively enhance the learning of mathematics. More recently research studies have started to explore students’ styles of working as they solve problems with technology. This paper describes the use of a software application that records the keystrokes made by students as they use calculators, in order to enable researchers to gain better insights into students’ working styles. The recordings obtained from this software can be replayed to observe how students have actually used their calculator in tackling a problem. The paper describes three pilot studies from quite different contexts, in which the software reveals how the calculators have been used by the students. In all of these studies the software provides insights into the working that would have been very difficult to obtain without the record of the keystrokes provided by the software.  相似文献   

4.
The use of mathematics analysis software (MAS) including handheld scientific and graphics calculators offers a range of pedagogical opportunities. Its use can support change in the didactic contract. MAS may become an alternative source of authority in the classroom empowering students to explore variation and regularity, manipulate simulations and link representations. Strategic use may support students to direct their own learning and explore mathematics, equipping them to share their findings with the teacher and the class with more confidence. This paper offers a framework for examining the impact of the use of MAS on the didactic contract. Lessons were observed in 12 grade 10 classes, with 12 different teachers new to MAS. MAS technology was used with a variety of didactic contracts, mostly traditional. The framework drew attention to many ways in which the teaching differed. Analysis of the didactic contract must consider both the teaching of mathematics and of technology skills, because these have different characteristics. In all classes, both teachers and students saw the teacher as having a responsibility to teach technology skills. Students saw technology skills as the main point of the lesson, but the teachers saw the lesson as primarily teaching mathematics—one of the mismatches which may need negotiation to adapt didactic contracts to teaching with MAS.  相似文献   

5.
This paper describes the mechanism used to gain insights into the state of the art of mathematics instruction in a large urban district in order to design meaningful professional development for the teachers in the district. Surveys of close to 2,000 elementary, middle school, and high school students were collected in order to assess the instructional practices used in mathematics classes across the district. Students were questioned about the frequency of use of various instructional practices that support the meaningful learning of mathematics. These included practices such as problem solving, use of calculators and computers, group work, homework, discussions, and projects, among others. Responses were analyzed and comparisons were drawn between elementary and middle school students' responses and between middle school and high school responses. Finally, fifth‐grade student responses were compared to those of their teachers. Student responses indicated that they had fewer inquiry‐based experiences, fewer student‐to‐student interactions, and fewer opportunities to defend their answers and justify their thinking as they moved from elementary to middle school to high school. In the elementary grades students reported an overemphasis on the use of memorization of facts and procedures and sparse use of calculators. Results were interpreted and specific directions for professional development, as reported in this paper, were drawn from these data. The paper illustrates how student surveys can inform the design of professional development experiences for the teachers in a district.  相似文献   

6.
Elementary school teachers in South Korea and the United States completed a beliefs and practices questionnaire pertaining to mathematical problem-solving instruction. Although both groups of teachers shared a general approach to teaching with a focus on problem-solving strategies, many differences were apparent. Korean teachers rated themselves and their students higher in problem-solving ability than American teachers. Korean teachers perceived their mathematics textbook as a more valuable source for problem-solving instruction and word problems. Korean teachers more strongly agreed that students should know the key-word approach for solving problems. American teachers reported more frequent use of calculators, manipulatives, and small group instruction. The results indicate that American teachers may more often use instructional techniques that are aligned with current recommendations for mathematics instruction.  相似文献   

7.
This paper reports the results of a project in which experienced middle grades mathematics teachers immersed themselves in calculator and computer use for both doing and teaching mathematics and prepared themselves as leaders for communicating their knowledge to colleagues. Project evaluation included interviews with participants at the beginning and end of the project and evaluation forms completed at the end of the project. Pre-interviews indicated that virtually all of the participants had no experience using technology to teach mathematics. Many felt that technology was not likely to be as effective in helping students learn mathematics as other teaching techniques. Post-interviews indicated that all teachers were confident of their abilities to use some technologies in teaching mathematics. They acknowledged that technology was useful in developing conceptual understanding and that their role was to guide this conceptual development. The differences in participants' perceptions about how the project affected them yielded suggestions for future inservice efforts about technology.  相似文献   

8.
Due to the increased availability of hand-held calculators, teachers at all grade levels must now face the prospect of having to change both how they teach mathematics as well as what mathematics they teach. Since most teachers did not learn mathematics with the help of technology, they need time to adjust to both a new learning environment and a new teaching one. Through federal funds, the Texas Education Agency has created mathematics staff development modules which help teachers learn about calculators, mathematics, and the integration of calculators in mathematics instruction. This article presents games based upon those included in the staff development modules. Each game was designed to promote exploration of mathematical relationships via a calculator, specifically, Texas Instrument's Math Explorer.  相似文献   

9.
The introduction of technology resources into mathematics classrooms promises to create opportunities for enhancing students’ learning through active engagement with mathematical ideas; however, little consideration has been given to the pedagogical implications of technology as a mediator of mathematics learning. This paper draws on data from a 3-year longitudinal study of senior secondary school classrooms to examine pedagogical issues in using technology in mathematics teaching — where “technology” includes not only computers and graphics calculators but also projection devices that allow screen output to be viewed by the whole class. We theorise and illustrate four roles for technology in relation to such teaching and learning interactions — master, servant, partner, and extension of self. Our research shows how technology can facilitate collaborative inquiry, during both small group interactions and whole class discussions where students use the computer or calculator and screen projection to share and test their mathematical understanding.  相似文献   

10.
11.
The purpose of this study was to investigate secondary mathematics teachers' use of the graphing calculator in their classrooms, The study examined whether algebra teachers are currently using this technology in their classrooms, their perceptions toward the technology, and any changes in the curriculum or instructional practices. A survey methodology was used in this study. The findings indicated that the use of the graphing calculator is still controversial to many algebra teachers. Teachers of algebra I were using graphing calculators to a significantly lesser degree than teachers of algebra H. However, modifications of the algebra curriculum are beginning to appear in classes using graphing calculators. Finally, a majority of algebra teachers responded that the graphing calculator was a motivational tool.  相似文献   

12.
This article addresses research related to the use of digital technologies in the teaching and learning of mathematics in Brazil. Its scope is limited to the context of school mathematics and, more specifically, to an ongoing research programme which involves the development of collaborative research partnerships with teachers of mathematics. The paper begins with a brief presentation of the introduction of computers into the Brazilian educational scenario in the 1980s, highlighting how computer technology was heralded as a key to permitting new pedagogical approaches appropriate to the constructivist philosophy of that time. It goes on to consider recent developments in the theoretical frameworks used to interpret mathematics learning in the presence of digital technologies and the importance of focusing on the learning system as a whole, considering epistemological, cognitive and pedagogic dimensions concomitantly. In this vein, it is argued that for any real integration to take place, the mathematical practices afforded by digital tools must be considered legitimate by all the actors in this process and, perhaps most notably, by teachers. The rest of the paper focuses on our approaches to involve teachers in making decisions about technology use in their own classrooms. The strategy used was based on the realisation of research activities underpinned by the idea of the collaborative design of learning situations and the goal of including the wide diversity of learners that characterises Brazilian mathematics classrooms.  相似文献   

13.
Elementary teachers from a large urban school district with a 74 percent minority student population were surveyed to assess their capacity to provide quality mathematics and science instruction. Forty-nine percent of the surveys distributed to a random sample of teachers were returned. Both strengths and barriers to capacity building were identified. Strengths included use of collaborative student work, manipulatives, informal learning environments, and alternative assessment practices; availability of calculators and computers; and high expectations for student learning. Barriers included lack of professional development, infrequent science instruction, limited calculator use, lack of planning time, inadequate resources, and the perception that science was not valued as highly as mathematics.  相似文献   

14.
This study was carried out to examine the effects of computer-assisted instruction (CAI) using dynamic software on the achievement of students in mathematics in the topic of reflection symmetry. The study also aimed to ascertain the pre-service mathematics teachers’ opinions on the use of CAI in mathematics lessons. In the study, a mixed research method was used. The study group of this research consists of 30 pre-service mathematics teachers. The data collection tools used include a reflection knowledge test, a survey and observations. Based on the analysis of the data obtained from the study, the use of CAI had a positive effect on achievement in the topic of reflection symmetry of the pre-service mathematics teachers. The pre-service mathematics teachers were found to largely consider that a mathematics education which is carried out utilizing CAI will be more beneficial in terms of ‘visualization’, ‘saving of time’ and ‘increasing interest/attention in the lesson’. In addition, it was found that the vast majority of them considered using computers in their teaching on the condition that the learning environment in which they would be operating has the appropriate technological equipment.  相似文献   

15.
Gilles Aldon 《ZDM》2010,42(7):733-745
The new generations of handheld calculators can be considered either as mathematical tools with opportunities for calculation and representation or as a part of the teachers’ and students’ sets of resources. Framed by the Theory of Didactical Situations and the documentational approach, we take advantage of a particular experiment on introducing complex calculators in scientific classes to investigate the position and the role of this handheld technology both for students and teachers. The results show how different functionalities can be shared among teachers and students, but also how other functionalities remain private and may even conflict with the teacher’s intentions.  相似文献   

16.
In this technology‐oriented age, teachers face daily decisions regarding the use of advanced digital technologies—graphing calculators, dynamic geometry software, blogs, wikis, podcasts and the like—to enhance student mathematical understanding in their classrooms. In this case study, the authors use the Technological, Pedagogical, and Content Knowledge (TPACK) model in conjunction with a five‐stage developmental model, which can be used to describe growth in TPACK to describe the initial attempts of a teacher, Jane, to develop TPACK as she learns and attempts to integrate an advanced teaching technology into her classroom, namely the TI‐Nspire graphing calculator. The study tracks her struggles to reconcile some traditional beliefs about how students learn with her desire to be responsive to what she perceives as affordances of advanced digital technologies. Main data collection methods were journal writing, observations, document analysis, and interviews. Using the five‐stage developmental model, we saw that this experience helped Jane to move among different stages. This study showed that the TPACK model with the five‐stage developmental model can be a beneficial tool for researchers to study teachers' professional growth and is also a valuable tool for teachers to reflect on their own growth.  相似文献   

17.
Margaret Kendal  Kaye Stacey 《ZDM》2002,34(5):196-203
In the near future many teachers may be required to incorporate CAS into their teaching practices. Based on classroom observations and interviews over two years, this paper reports how two teachers made the transition from using graphics calculators to CAS calculators while teaching differential calculus to upper secondary school students. Both teachers taught with CAS in ways that were consistent with their beliefs about learning and teaching. Over two years, the teachers' teaching approaches and purpose for use of technology were stable and seemed to be underpinned by their beliefs about learning. In contrast, both teachers made changes to the content they taught (and thus what they used technology for) in response to new institutional knowledge. Content choice seemed to be underpinned by the teachers' purpose for teaching. Other influences impacted on what the teachers taught and how they taught it: the teachers' content knowledge, their pedagogical content knowledge, and the lack of legitimacy of CAS as a tool for learning and during examinations in the trial school and wider educational community. The extent of differences noted between the responses of just two teachers indicates that there will be many responses to using CAS in classrooms, as teachers aim to achieve different learning goals and interpret their responsibilities to students in different ways.  相似文献   

18.
This article summarizes research conducted on calculator block items from the 2007 fourth‐ and eighth‐grade National Assessment of Educational Progress Main Mathematics. Calculator items from the assessment were categorized into two categories: problem‐solving items and noncomputational mathematics concept items. A calculator has the potential to be used as a problem‐solving tool for items categorized in the first category. On the other hand, there are no practical uses for calculators for noncomputational mathematics concept items. Item‐level performance data were disaggregated by student‐reported calculator use to investigate the differences in achievement of those fourth‐ and eighth‐grade students who chose to use calculators versus those who did not, and whether or not the nation's fourth and eighth graders are able to identify items where calculator use serves as an aide for solving a given mathematical problem. Results from the analysis show that eighth graders, in particular, benefit most from the use of calculators on problem‐solving items. A small percentage of students at both grade levels attempted to use a calculator to solve problems in the noncomputational mathematics concept category (items in which the use of a calculator does not serve as a tool to solve the problem).  相似文献   

19.
This study investigated K‐12 teachers' beliefs and reported teaching practices regarding calculator use in their mathematics instruction. A survey was administered to more than 800 elementary, middle and high school teachers in a large metropolitan area to address the following questions: (a) what are the beliefs and practices of mathematics teachers regarding calculator use? and (b) how do these beliefs and practices differ among teachers in three grade bands? Factor analysis of 20 Likert scale items revealed four factors that accounted for 54% of the variance in the ratings. These factors were named Catalyst Beliefs, Teacher Knowledge, Crutch Beliefs, and Teacher Practices. Compared to elementary teachers, high school teachers were significantly higher in their perception of calculator use as a catalyst in mathematics instruction. However, the higher the grade level of the teacher, the higher the mean score on the perception that calculator use may be a way of getting answers without understanding mathematical processes. The mean scores for teachers in all three grade bands indicated agreement that students can learn mathematics through calculator use and using calculators in instruction will lead to better student understanding and make mathematics more interesting. The survey results shed light on teachers' self reported beliefs, knowledge, and practices in regard to consistency with elements of the National Council of Teachers of Mathematics Principles and Standards for School Mathematics (2000) technology principle and the NCTM use of technology position paper (2003). This study extended previous research on teachers' beliefs regarding calculator use in classrooms by examining and comparing the results of teacher surveys across three grade bands.  相似文献   

20.
Forty‐two studies comparing students with access to graphing calculators during instruction to students who did not have access to graphing calculators during instruction are the subject of this meta‐analysis. The results on the achievement and attitude levels of students are presented. The studies evaluated cover middle and high school mathematics courses, as well as college courses through first semester calculus. When calculators were part of instruction but not testing, students' benefited from using calculators while developing the skills necessary to understand mathematics concepts. When calculators were included in testing and instruction, the procedural, conceptual, and overall achievement skills of students improved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号