首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Extended X-ray Absorption Fine Structure (EXAFS) is a powerful method of determining short range order and local structures in materials using X-ray photons produced by a synchrotron light source, or in-house by a high intensity rotating anode X-ray generator. The technique has provided valuable structural information on disordered solids (such as metal-on-support catalysts), amorphous solids, semiconductors and the environment of metals in metallo-enzymes.  相似文献   

2.
Nanoparticulated TiO2 materials with anatase structure were synthesized by using a microemulsion method. The structural characteristics of the amorphous solid precursors and their evolution during thermal treatments were studied by using X-ray absorption structure (X-ray absorption near edge structure XANES and extended X-ray absorption fine structure EXAFS), XRD-PDF (X-ray diffraction-pair distribution function), and infrared spectroscopy. Concerning the precursor materials, XANES and EXAFS showed a local order closely related to that of the anatase structure but containing defective, undercoordinated Ti5c4+ species in addition to normal Ti6c4+ species. The PDF technique detects differences among samples in the local order (below 1 nm) and showed that primary particle size varies throughout the amorphous precursor series. The physical interpretation of results concerning the amorphous materials and their evolution under thermal treatment gives conclusive evidence that local, intraparticle ordering variations determine the temperature for the onset of the nucleation process and drive the solid behavior through the whole crystallization process. The significance of this result in the context of current crystallization theories of oxide-based nanocrystalline solids is discussed.  相似文献   

3.
Two solid solutions of lead zirconium titanates PbZr x Ti1 – x O3 (x = 0.1 and 0.35) as well as the reference compounds lead titanate and lead zirconate were prepared from zirconium and titanium n-propoxide, dissolved in 2-methoxyethanol, by sol-gel process. The amorphous products after pyrolysis of the dried gels and the crystalline phases were studied by EXAFS spectroscopy to monitor the structural changes from the amorphous oxide mixture to the crystalline ceramics after calcination. Additionally, the crystalline phases were identified by X-ray diffraction (XRD).It follows from the analysis of the EXAFS data that the local order of the amorphous phases seems to be completely different from that of the crystalline phase. There is no indication of a preformation of the local order of the perovskite structure. The analysis of our EXAFS spectra can be interpreted very consistently with the assumption that in the amorphous samples a segregation exists on molecular level and the low crystallisation temperatures are a consequence of very short diffusion paths.  相似文献   

4.
The large unit cells, the enormous flexibility and variation in structural motifs of MOFs represent a big challenge in the characterization of MOF materials, particularly in cases where single crystal diffraction data are not available. In this critical review it is shown that in cases where only powder diffraction data are available additional structural information, particularly regarding local coordination within the inorganic cluster, are often mandatory in order to solve the structure. There are also cases where the inorganic cluster does not follow the symmetry of the overall structure. In such cases diffraction techniques will just "see" an average structure, missing the local structure: a lack that may be critical for understanding the specific properties of the material. In both cases, EXAFS spectroscopy is the tool that provides complementary structural information on the inorganic cluster and the way it binds to the ligand. Selected examples will show how EXAFS will be relevant in: (i) confirming the structure obtained from diffraction refinements; (ii) highlighting that the inorganic cornerstone has a lower symmetry with respect to that of the organic framework; (iii) obtaining the local structure of the inorganic cluster in the desolvated material when desolvation causes a partial loss of long range order; (iv) obtaining the local structure of the inorganic cluster in the desolvated material after coordination of a probe (or reactant) molecule, including cluster deformation upon molecule coordination and metal-molecule binding distance; (v) evidencing the presence of impurities in the form of amorphous extra-phases (339 references).  相似文献   

5.
This tutorial review centers on recent advances and applications of experimental techniques that help characterize surface species and catalyst structures under in situ conditions. We start by reviewing recent applications of IR spectroscopy of working catalysis, emphasizing newer approaches such as Sum Frequency Generation and Polarization Modulation-infrared reflection absorption spectroscopy. This is followed by a section on solid-state NMR spectroscopy for the detection of surface species and reaction intermediates. These two techniques provide information mainly about the concentration and identity of the prevalent surface species. The following sections center on methods that provide structural and chemical information about the catalyst surface. The increasingly important role of high-pressure X-ray photoelectron spectroscopy in catalyst characterization is evident from the new and interesting information obtained on supported catalysts as presented in recent reports. X-Ray absorption spectroscopy (XANES and EXAFS) is used increasingly under reaction conditions to great advantage, although is inherently limited to systems where the bulk of the species in the sample are surface species. However, the ability of X-rays to penetrate the sample has been used cleverly by a number of groups to understand how changing reaction conditions change the structure and composition of surface atoms on supported catalyst.  相似文献   

6.
Cobalt-containing mesoporous materials that have been prepared using different procedures have been comparatively characterized by transmission electron microscopy/energy-dispersive X-ray spectroscopy (TEM/EDS), extended X-ray absorption fine structure spectroscopy (EXAFS), X-ray absorption near edge spectroscopy (XANES), and ultraviolet-visible (UV-vis), near-infrared (NIR), and mid-infrared (mid-IR) spectroscopies, and the results provide new insights into the local environment and properties of cobalt in this type of material. TEM/EDS analyses have shown that tetraethyl orthosilicate (TEOS) may be less appropriate as a silicon source during the syntheses of cobalt-containing mesoporous materials, because the distribution of cobalt throughout the framework may become uneven. EXAFS has been determined to be the most suitable method for direct verification of framework incorporation, by identifying silicon as the backscatterer in the second shell. Such a direct verification may not be obtained using UV-vis spectroscopy. From EXAFS analyses, it is also possible to distinguish between surface-bound and framework-incorporated cobalt. There is a good agreement between the results obtained from XANES and UV-vis regarding the coordination symmetry of cobalt in the samples. The presence of cobalt in the silica framework has been determined to create Lewis acid sites, and these acid sites are suggested to be located at tetrahedral cobalt sites at the surface.  相似文献   

7.
Monodisperse ruthenium nanoparticles were prepared by reduction of RuCl3 in 1,2-propanediol. The mean particle size was controlled by appropriate choice of the reduction temperature and the acetate ion concentration. Colloidal solutions in toluene were obtained by coating the metal particles with dodecanethiol. High-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and X-ray absorption spectroscopy (XANES and EXAFS for the Ru K-absorption edge) were performed on particles of two different diameters, 2 and 4 nm, and in different environments, polyol/acetate or thiol. For particles stored in polyol/acetate XPS studies revealed superficial oxidation limited to one monolayer and a surface coating containing mostly acetate ions. Analysis of the EXAFS spectra showed both oxygen and ruthenium atoms around the ruthenium atoms with a Ru-Ru coordination number N smaller than the bulk value, as expected for fine particles. In the case of 2 nm acetate-capped particles N is consistent with particles made up of a metallic core and an oxidized monolayer. For 2 nm thiol-coated particles, a Ru-S bond was evidenced by XPS and XAS. For the 4 nm particles XANES and XPS studies showed that most of the ruthenium atoms are in the zerovalent state. Nevertheless, in both cases, when capped with thiol, the Ru-Ru coordination number inferred from EXAFS is much smaller than for particles of the same size stored in polyol. This is attributed to a structural disorganization of the particles by thiol chemisorption. HRTEM studies confirm the marked dependence of the structural properties of the ruthenium particles on their chemical environment; they show the acetate-coated particles to be single crystals, whereas the thiol-coated particles appear to be polycrystalline.  相似文献   

8.
9.
The electronic structure and modification of the local interatomic structure of a reactive sputtered amorphous tantalum oxide (a-TaO(x)) thin film with the variation of oxygen nonstoichiometry, x in a-TaO(x) have been investigated by X-ray absorption spectroscopy (XAS), X-ray photoemission spectroscopy (XPS), Raman scattering spectroscopy, and Rutherford back scattering spectroscopy. A parallel chemical shift of Ta4f(7/2) and O1s core levels observed with the variation of x indicates the Fermi level shift by reduction and oxidation in the framework of the rigid band model. Extended X-ray absorption fine structure (EXAFS) suggests both the increase of average coordination number of the first Ta-O shell in polyhedra and a considerable reduction of the average Ta-O bond length with the increase of x. The relative intensity of Raman shift peaks at 670 cm(-1) and 815 cm(-1), corresponding to Ta-O stretching of TaO(6) octahedra and TaO(5) probably with a pyramidal form, respectively, drastically changes between x = 2.47 to 1.86, suggesting the change in the predominant polyhedron from TaO(6) to TaO(5) with a modification in multiplicity of oxygen by the reorganization of the polyhedral network.  相似文献   

10.
应用扩展X射线吸收精细结构(EXAFS)光谱研究了CuCl2水溶液中Cu2+的区域环境结构, 通过测定CuCl2水溶液在不同浓度条件下及冷冻-解冻(FT)处理前后Cu K边EXAFS 吸收谱, 研究了浓度及冷冻-解冻处理对Cu2+第一配位层结构的影响. EXAFS实验结果表明, CuCl2水溶液中Cu2+第一配位层距离中心原子Cu最近邻原子为O原子, 配位数介于3.0-4.3之间, Cu—O键长在0.192-0.198 nm 之间, 这种结构与Cu2+的Jahn-Teller效应有关. 不同浓度的CuCl2水溶液中Cu2+的区域环境结构有很大不同, 随着CuCl2水溶液浓度的升高, Cu2+第一配位层配位数减小, Cu—O键伸长. 结构参数拟合结果证实冷冻-解冻处理对Cu2+的区域环境结构有影响, CuCl2溶液经冷冻-解冻处理后, Cu2+第一配位层配位数变大, 热无序度增加.  相似文献   

11.
This work is an investigation of the mechanisms of interaction between uranium (VI) ions and zirconium silicate. The speciation of uranium (VI) sorbed on zircon was studied using four complementary techniques as probes of the local structure around the uranium atom: laser spectrofluorimetry, X-ray photoelectron spectroscopy (XPS), diffuse reflectance infrared Fourier-transformed (DRIFT) spectroscopy, and EXAFS spectroscopy. The sorption of uranyl on zirconium oxide was also studied to allow structural comparisons. Spectrofluorimetry and XPS results allowed an identification of the silicate sorption sites on the solid. These methods associated with spectrofluorimetry and DRIFT led to a characterization of the sorbed surface complexes, taking into account the influence of the nature of the background salt and of the pH on the structure of the U(VI) surface species. EXAFS measurements, either on air-dried samples or in situ, were then carried out on well-characterized samples and allowed identification of the sorption mechanism on zircon as the formation of an inner-sphere polydentate surface complex.  相似文献   

12.
Many attempts to obtain single crystals appropriate for X-ray diffraction analysis of the Ln(tpp)(acac) derivatives (where Ln = Gd or Sm, tpp = tetraphenylporphyrin and acac = acetylacetonate) have failed so far. A suitable way to get structural parameters for these monoporphyrinates is to use extended X-ray absorption fine structure (EXAFS) spectroscopy. We recorded spectra of the monoporphyrins, Ln(tpp)(acac) and Gd(tpyp)(acac) (where tpyp = tetrapyridylporphyrin), and the bisporphyrin GdH(tpyp)2 in the solid state. We particularly focused our structural analysis on Gd(tpp)(acac), applying both molecular modeling and EXAFS, which allowed us to get accurate results about the local environment of the central atom. The Gd3+ ion of the complex at room temperature was found to be bonded to four monoporphyrin nitrogen atoms at an average distance R(Gd-N(av)) = 2.48 A and to three or four oxygen atoms at R(Gd-O(ac,w)) = 2.38 A from an acetylacetonato anion and a water molecule. The presence of the second water molecule in the coordination sphere was barely discernible by EXAFS analysis. Molecular modeling has provided further information about the coordination core geometry of the Gd(tpp)(acac) monoporphyrinate, including a bishydrated coordination sphere. Also, it has enabled the construction of a 3D structural model on which multiple scattering analyses were attempted. Monte Carlo simulation was used to validate the adjustments. EXAFS spectra analysis was carried out on the derivatives, displaying slight distortions in the lanthanide central-atom coordination geometry.  相似文献   

13.
A detailed investigation of the hydration structure of Zn2+, Ni2+, and Co2+ in water solutions has been carried out combining X-ray absorption fine structure (EXAFS) spectroscopy and Molecular Dynamics (MD) simulations. The first quantitative analysis of EXAFS from hydrogen atoms in 3d transition metal ions in aqueous solutions has been carried out and the ion-hydrogen interactions have been found to provide a detectable contribution to the EXAFS spectra. An accurate determination of the structural parameters associated with the first hydration shell has been performed and compared with previous experimental results. No evidence of significant contributions from the second hydration shell to the EXAFS signal has been found for these solutions, while the inclusion of the hydrogen signal has been found to be important in performing a quantitative analysis of the experimental data. The high-frequency contribution present in the EXAFS spectra has been found to be due to multiple scattering (MS) effects inside the ion-oxygen first coordination shell. MD has been used to generate three-body distribution functions from which a reliable analysis of the MS contributions to the EXAFS spectra of these systems has been carried out.  相似文献   

14.
Radiative Auger spectra are weak X-ray emission spectra near the characteristic X-ray lines. Radiative Auger process is an intrinsic energy-loss process in an atom when a characteristic X-ray photon is emitted, due to an atomic many-body effect. The energy loss spectra correspond to the unoccupied conduction band structure of materials. Therefore the radiative Auger effect is an alternative tool to the X-ray absorption spectroscopy such as EXAFS (Extended X-ray Absorption Fine Structure) and XANES (X-ray Absorption Near Edge Structure), and thus it is named EXEFS (Extended X-ray Emission Fine Structure). By the use of a commercially available X-ray fluorescence spectrometer or an electron probe microanalyzer (EPMA), which are frequently used in materials industries, we can obtain an EXEFS spectrum within 20 min. The radiative Auger effect, as an example, demonstrates that the study on atomic many-body effects has become a powerful tool for crystal and electronic structure characterizations. The EXEFS method has already been used in many industries in Japan. Reviews about the applications and basic study results on the radiative Auger effect are reported in this paper.  相似文献   

15.
Electronic and local structural changes in ramsdellite-type Li(2+x)Ti3O7 compound were investigated by X-ray absorption spectroscopy (XAS) measurements. Upon electrochemical Li-ion insertions, the host lattice with ramsdellite structure is retained, indicated by X-ray powder diffraction. Ti K-edge extended X-ray absorption fine structure (EXAFS) analysis shows, however, slight local structural distortions around Ti ions. The energy shifts and the changes in the peak intensity of Ti K-edge and Ti L-edge XAS reveal the reducing oxidation states of Ti ions as the amount of electrochemically-inserted Li-ion increases. Equally important, oxide ions have a significant effect on the electronic transfer process, suggested by O K-edge XAS. These results on electronic structural changes were interpreted using the Zaanen-Sawatzky-Allen scheme.  相似文献   

16.
应用扩展X射线吸收精细结构(EXAFS)光谱研究了CuCl2水溶液中Cu2+的区域环境结构,通过测定CuCl2水溶液在不同浓度条件下及冷冻-解冻(FT)处理前后CuK边EXAFS吸收谱,研究了浓度及冷冻-解冻处理对Cu2+第一配位层结构的影响.EXAFS实验结果表明,CuCl2水溶液中Cu2+第一配位层距离中心原子Cu最近邻原子为O原子,配位数介于3.0-4.3之间,Cu—O键长在0.192-0.198nm之间,这种结构与Cu2+的Jahn-Teller效应有关.不同浓度的CuCl2水溶液中Cu2+的区域环境结构有很大不同,随着CuCl2水溶液浓度的升高,Cu2+第一配位层配位数减小,Cu—O键伸长.结构参数拟合结果证实冷冻-解冻处理对Cu2+的区域环境结构有影响,CuCl2溶液经冷冻-解冻处理后,Cu2+第一配位层配位数变大,热无序度增加.  相似文献   

17.
Analytical methods with low detection limits were used for the investigation of Ir-Si thin films, the physical properties of which vary strongly with the chemical composition and the amount of impurities. It is demonstrated how to solve chemical characterization of different thermoelectric Ir-Si thin films by spark source mass spectrometry (SS-MS), glow discharge optical emission spectroscopy (GD-OES) and X-ray photoelectron spectroscopy (XPS). The combined use of the three different facilities allows the quantification of impurities of elements of the entire periodic system in the ppm range (down to 30 at.-ppm in dependence on the element) incorporated in thin film samples. Additional information about the in-depth distribution of elements or specifically bonded species can be achieved with a high depth resolution.  相似文献   

18.
To develop a solid scientific basis for maintaining soil quality and formulating effective remediation strategies, it is critical to determine how environmentally-important trace metals are sequestered in soils at the molecular scale. The speciation of Mn, Fe and Cu in soil organic matter has been determined by synchrotron-based techniques: extended X-ray absorption fine structure (EXAFS) and X-ray absorption near edge structure (XANES). We show the structural similarity between the surface complexes of Mn(II), Fe(III) and Cu(II). These cations are bound to the surface through oxygen atoms. Each one presents a more or less tetragonal-distorted octahedral geometry. The use of X-ray absorption spectroscopy provides a relevant method for determining trace-metal speciation in both natural and contaminated environmental materials.  相似文献   

19.
The understanding of the atomic-scale structural and chemical ordering in supported nanosized alloy particles is fundamental for achieving active catalysts by design. This report shows how such knowledge can be obtained by a combination of techniques including X-ray photoelectron spectroscopy and synchrotron radiation based X-ray fine structure absorption spectroscopy and high-energy X-ray diffraction coupled to atomic pair distribution function analysis, and how the support-nanoalloy interaction influences the catalytic activity of ternary nanoalloy (platinum-nickel-cobalt) particles on three different supports: carbon, silica, and titania. The reaction of carbon monoxide with oxygen is employed as a probe to the catalytic activity. The thermochemical processing of this ternary composition, in combination with the different support materials, is demonstrated to be capable of fine-tuning the catalytic activity and stability. The support-nanoalloy interaction is shown to influence structural and chemical ordering in the nanoparticles, leading to support-tunable active sites on the nanoalloys for oxygen activation in the catalytic oxidation of carbon monoxide. A nickel/cobalt-tuned catalytic site on the surface of nanoalloy is revealed for oxygen activation, which differs from the traditional oxygen-activation sites known for oxide-supported noble metal catalysts. The discovery of such support-nanoalloy interaction-enabled oxygen-activation sites introduces a very promising strategy for designing active catalysts in heterogeneous catalysis.  相似文献   

20.
A simple wet chemical method involving only ultrasonic processing in dilute ceric sulfate (CS) was used to functionalize carbon nanotubes (CNTs). Unexpectedly, single-walled and multiwalled carbon nanotubes (SWCNTs and MWCNTs) were cut, oxidized, and disintegrated by sonication in 0.1 N CS for 2-5 h. Transmission electron microscopy (TEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction spectroscopy (XRD), Raman scattering, and photoacoustic Fourier transform infrared spectroscopy (FTIR) were used to probe wall damage during the chemical processing. Cyclic voltammetry and impedance spectroscopy were used to evaluate the conductivity of the CS-treated CNTs. This one-step process resulted in the destruction of SWCNTs to produce nonconducting amorphous carbon. MWCNTs were oxidized and converted to graphitic materials and amorphous carbon with retained conductivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号