首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The mechanisms by which ionizing radiation directly causes strand breaks in DNA were investigated by comparing the chemical yield of DNA-trapped free radicals to the chemical yield of DNA single strand break (ssb) and double strand break (dsb), as a function of hydration (Gamma). Solid-state films of plasmid pUC18, hydrated to 2.5 < Gamma < 22.5 mol, were X-irradiated at 4 K, warmed to room temperature, and dissolved in water. Free radical yields were determined by EPR at 4 K. With use of the same samples, Gel electrophoresis was used to measure the chemical yield of total strand breaks, which includes prompt plus heat labile ssb; G'total(ssb) decreased from 0.092 +/- 0.016 micromol/J at Gamma= 2.5 to 0.066 +/- 0.008 micromol/J at Gamma= 22.5. Most provocative is that at Gamma= 2.5 the yield of total ssb exceeds the yield of trapped deoxyribose radicals: G'total(ssb) - G'sugar(fr) = 0.06 +/- 0.02 micromol/J. Nearly 2/3 of the strand breaks are derived from precursors other than radicals trapped on the deoxyribose moiety. To account for these nonradical precursors, we hypothesize that strand breaks are produced by two one-electron oxidations at a single deoxyribose residue within an ionization cluster.  相似文献   

2.
Excited states of one-electron-oxidized guanine in DNA are known to induce hole transfer to the sugar moiety and on deprotonation result in neutral sugar radicals that are precursors of DNA strand breaks. This work carried out in a homogeneous aqueous glass (7.5 M LiCl) at low temperatures (77-175 K) shows the extent of photoconversion of one-electron-oxidized guanine and the associated yields of individual sugar radicals are crucially controlled by the photon energy, protonation state, and strandedness of the oligomer. In addition to sugar radical formation, highly oxidizing excited states of one-electron-oxidized guanine are produced with 405 nm light at pH 5 and below that are able to oxidize chloride ion in the surrounding solution to form Cl(2)(?-) via an excited-state hole transfer process. Among the various DNA model systems studied in this work, the maximum amount of Cl(2)(?-) is produced with ds (double-stranded) DNA, where the one-electron-oxidized guanine exists in its cation radical form (G(?+):C). Thus, via excited-state hole transfer, the dsDNA is apparently able to protect itself from cation radical excited states by transfer of damage to the surrounding environment.  相似文献   

3.
Single- and double-stranded calf thymus DNA and two polynucleotides (0.4 mM) were studied in aqueous solution at pH approximately 7 using pulsed, 20 ns laser excitation at 193 nm. Monophotonic ionization of the nucleic acids is suggested from the linear dependences of the concentration of ejected electrons and the number of single- and double-strand breaks (ssb, dsb, respectively) on laser intensity (IL) in the range (0.2-3) x 10(6) W cm-2. The quantum yields of formation of hydrated electrons (phi e-) and ssb and dsb (phi ssb and phi dsb) are therefore independent of IL. In contrast, under 248 nm excitation these quantum yields increase linearly with IL under otherwise comparable conditions. Nevertheless, several effects and mechanistic implications are analogous using lambda exc = 193 and 248 nm. For polycytidylic acid, poly(C), in Ar-saturated solution for example, the efficiency of ssb per radical cation (eta RC = phi ssb/phi e-) is similar to the efficiency of ssb per OH radical (eta OH). For polyadenylic acid, poly(A), and single- and double-stranded DNA eta RC (lambda exc = 193 nm) is significantly smaller than eta OH. The ratio phi ssb (N2O)/phi ssb (Ar) is approximately 2 for poly(C), approximately 4 for poly(A) approximately 10 for DNA; the conversion of hydrated electrons into OH radicals in N2O-saturated solution and smaller eta RC than eta OH values in the case of DNA account for these results. For double-stranded DNA phi dsb does not depend on IL but increases linearly with the dose, indicating an accumulative effect of two ssb to generate one dsb. The critical distance for this event is 60-85 phosphoric acid diester bonds.  相似文献   

4.
Using the flash-quench technique to probe DNA charge transport in assemblies containing a tethered ruthenium intercalator, the kinetics and yield of methylindole radical formation as a function of DNA sequence were studied by laser spectroscopy and biochemical methods. In these assemblies, the methylindole moiety serves as an artificial base of low oxidation potential. Hole injection and subsequent formation of the methylindole radical cation were observed at a distance of over 30 A at rates >/=107 s-1 in assemblies containing no guanine bases intervening the ruthenium intercalator and GMG oxidation site. Radical yield was, however, strikingly sensitive to an intervening base mismatch; no significant methylindole radical formation was evident with an intervening AA mismatch. Also critical is the sequence at the injection site; this sequence determines initial hole localization and hence the probability of hole propagation. With guanine rather than inosine near the site of hole injection, decreased yields of radicals and long-range oxidative damage are observed. The presence of the low-energy guanine site in this case serves to localize the hole and therefore diminish charge transport through the base pair stack.  相似文献   

5.
The yields of gamma-radiation-induced single- and double-strand breaks (ssb's and dsb's) as well as base lesions, which are converted into detectable ssb by the base excision repair enzymes endonuclease III (Nth) and formamidopyrimidine-DNA glycosylase (Fpg), at 278 K have been measured as a function of the level of hydration of closed-circular plasmid DNA (pUC18) films. The yields of ssb and dsb increase slightly on increasing the level of hydration (Gamma) from vacuum-dried DNA up to DNA containing 15 mol of water per mole of nucleotide. At higher levels of hydration (15 < Gamma < 35), the yields are constant, indicating that H2O*+ or diffusible hydroxyl radicals, if produced in the hydrated layer, do not contribute significantly to the induction of strand breaks. In contrast, the yields of base lesions, recognized by Nth and Fpg, increase with increasing hydration of the DNA over the range studied. The maximum ratios of the yields of base lesions to that of ssb are 1.7:1 and 1.4:1 for Nth- and Fpg-sensitive sites, respectively. The yields of additional dsb, revealed after enzymatic treatment, increase with increasing level of hydration of DNA. The maximum yield of these enzymatically induced dsb is almost the same as that for prompt, radiation-induced dsb's, indicating that certain types of enzymatically revealed, clustered DNA damage, e.g., two or more lesions closely located, one on each DNA strand, are induced in hydrated DNA by radiation. It is proposed that direct energy deposition in the hydration layer of DNA produces H2O*+ and an electron, which react with DNA to produce mainly base lesions but not ssb. The nucleobases are oxidized by H2O*+ in competition with its conversion to hydroxyl radicals, which if formed do not produce ssb's, presumably due to their scavenging by Tris present in the samples. This pathway plays an important role in the induction of base lesions and clustered DNA damage by direct energy deposition in hydrated DNA and is important in understanding the processes that lead to radiation degradation of DNA in cells or biological samples.  相似文献   

6.
Using the reduction potential of one-electron oxidized guanosine in water and the pKa values of the radical and of the parent, the N1-H bond energy of the 2'-deoxyguanosine moiety is determined to be (94.3+/-0.5) kcal mol(-1). Using the DFT method, the energy of the N1-centered guanosine radical is calculated and compared with those of the C1'- and C4'-radicals formed by H-abstraction from the 2'-deoxyribose moiety of the molecule. The result is that these deoxyribose-centered radicals appear to be more stable than the N1-centered one by up to 3 kcalmol(-1). Therefore, H-abstraction from a 2'-deoxyribose C-H bond by an isolated guanosine radical should be thermodynamically feasible. However, if the stabilization of a guanine radical by intrastrand pi-pi interaction with adjacent guanines and the likely lowering of the oxidation potential of guanine by interstrand proton transfer to the complementary cytosine base are taken into account, there is no more thermodynamic driving force for H-abstraction from a deoxyribose unit. As a further criterion for judging the probability of occurrence of such a reaction in DNA, the stereochemical situation that a DNA-guanosine radical faces was investigated utilizing X-ray data for relevant model oligonucleotides. The result is that the closest H-atoms from the neighboring 2'-deoxyribose units are at distances too large for efficient reaction. As a consequence, H-abstraction from 2'-deoxyribose by the DNA guanine radical leading subsequently to a "frank" DNA strand break is very unlikely. The competing reaction of the guanine radical cation with a water molecule which eventually yields 8-oxo-2'-deoxyguanosine (leading to "alkali-inducible" strand breaks) has thus a chance to proceed.  相似文献   

7.
The anthraquinone (AQ) photosensitized one-electron oxidation of DNA introduces a radical cation (electron "hole") that migrates through the duplex by hopping. The radical cation normally is trapped irreversibly by reaction at guanine. We constructed AQ-linked DNA oligomers composed exclusively of A/T base pairs. Their irradiation led to reaction and strand cleavage primarily at thymines. Long-distance radical cation hopping to distant thymines was demonstrated by the distance dependence of the process and by experiments with DNA oligomers that contain a single remote GG step. The reaction of the radical cation at thymine was shown to involve its 5-methyl group by the replacement of selected thymines with uracils. These findings show that the reactivity of radical cations in DNA cannot be explained simply by exclusive reliance on the relative oxidation potential of the nucleobases. Instead, the site of reaction is determined in accord with the Curtin-Hammett principle for reactive species in rapid equilibrium.  相似文献   

8.
The purpose of this study was to determine how free radical formation (fr) correlates with single strand break (ssb) and double strand break (dsb) formation in DNA exposed to the direct effects of ionizing radiation. Chemical yields have been determined of (i) total radicals trapped on DNA at 4 K, G(Sigmafr), (ii) radicals trapped on the DNA sugar, Gsugar(fr), (iii) prompt single strand breaks, Gprompt(ssb), (iv) total single strand breaks, Gtotal(ssb), and (v) double strand breaks, G(dsb). These measurements make it possible, for the first time, to quantitatively test the premise that free radicals are the primary precursors to strand breaks. G(fr) were measured by EPR applied to films of pEC (10,810 bp) and pUC18 (2686 bp) plasmids hydrated to Gamma = 22 mol of water/nucleotide and X-irradiated at 4 K. Using these same samples warmed to room temperature, strand breaks were measured by gel electrophoresis. The respective values for pEC and pUC18 were G(fr) = 0.71 +/- 0.02 and 0.61 +/- 0.01 micromol/J, Gtotal(ssb) = 0.09 +/- 0.01 and 0.14 +/- 0.01 micromol/J, G(dsb) = 0.010 +/- 0.001 and 0.006 +/- 0.001 micromol/J, and Gtota)(ssb)/G(dsb) approximately 9 and approximately 20. Surprisingly, Gsugar(fr) approximately 0.06 mumol/J for pUC18 films, less than half of Gtotal(ssb). This indicates that a significant fraction of strand breaks are derived from precursors other than trapped DNA radicals. To explain this disparity, various mechanisms were considered, including one that entails two one-electron oxidations of a single deoxyribose carbon.  相似文献   

9.
DNA assemblies containing 4-methylindole incorporated as an artificial base provide a chemically well-defined system in which to explore the oxidative charge transport process in DNA. Using this artificial base, we have combined transient absorption and EPR spectroscopies as well as biochemical methods to test experimentally current mechanisms for DNA charge transport. The 4-methylindole radical cation intermediate has been identified using both EPR and transient absorption spectroscopies in oxidative flash-quench studies using a dipyridophenazine complex of ruthenium as the intercalating oxidant. The 4-methylindole radical cation intermediate is particularly amenable to study given its strong absorptivity at 600 nm and EPR signal measured at 77 K with g = 2.0065. Both transient absorption and EPR spectroscopies show that the 4-methylindole is well incorporated in the duplex; the data also indicate no evidence of guanine radicals, given the low oxidation potential of 4-methylindole relative to the nucleic acid bases. Biochemical studies further support the irreversible oxidation of the indole moiety and allow the determination of yields of irreversible product formation. The construction of these assemblies containing 4-methylindole as an artificial base is also applied in examining long-range charge transport mediated by the DNA base pair stack as a function of intervening distance and sequence. The rate of formation of the indole radical cation is >/=10(7) s(-)(1) for different assemblies with the ruthenium positioned 17-37 A away from the methylindole and with intervening A-T base pairs primarily composing the bridge. In these assemblies, methylindole radical formation at a distance is essentially coincident with quenching of the ruthenium excited state to form the Ru(III) oxidant; charge transport is not rate limiting over this distance regime. The measurements here of rates of radical cation formation establish that a model of G-hopping and AT-tunneling is not sufficient to account for DNA charge transport. Instead, these data are viewed mechanistically as charge transport through the DNA duplex primarily through hopping among well stacked domains of the helix defined by DNA sequence and dynamics.  相似文献   

10.
In previous work, we have shown that photoexcitation of guanine cation radical (G*+) in frozen aqueous solutions of DNA and its model compounds at 143 K results in the formation of neutral sugar radicals with substantial yield. In this report, we present electron spin resonance (ESR) and theoretical (DFT) evidence regarding the formation of sugar radicals after photoexcitation of guanine cation radical (G*+) in frozen aqueous solutions of one-electron-oxidized RNA model compounds (nucleosides, nucleotides and oligomers) at 143 K. Specific sugar radicals C5'*, C3'* and C1'* were identified employing derivatives of Guo deuterated at specific sites in the sugar moiety, namely, C1'-, C2'-, C3'- and C5'-. These results suggest C2'* is not formed upon photoexcitation of G*+ in one-electron-oxidized Guo and deuterated Guo derivatives. Phosphate substitution at C5'- (i.e., in 5-GMP) hinders formation of C5'* via photoexcitation at 143 K but not at 77 K. For the RNA-oligomers studied, we observe on photoexcitation of oligomer-G*+ the formation of mainly C1'* and an unidentified radical with a ca. 28 G doublet. The hyperfine coupling constants of each of the possible sugar radicals were calculated employing the DFT B3LYP/6-31G* approach for comparison to experiment. This work shows that formation of specific neutral sugar radicals occurs via photoexcitation of guanine cation radical (G*+) in RNA systems but not by photoexcitation of its N1 deprotonated species (G(-H)*). Thus, our mechanism regarding neutral sugar formation via photoexcitation of base cation radicals in DNA appears to be valid for RNA systems as well.  相似文献   

11.
DNA multiply charged anions stored in a quadrupole ion trap undergo one-photon electron ejection (oxidation) when subjected to laser irradiation at 260 nm (4.77 eV). Electron photodetachment is likely a fast process, given that photodetachment is able to compete with internal conversion or radiative relaxation to the ground state. The DNA [6-mer]3- ions studied here show a marked sequence dependence of electron photodetachment yield. Remarkably, the photodetachment yield (dG6 > dA6 > dC6 > dT6) is inversely correlated with the base ionization potentials (G < A < C < T). Sequences with guanine runs show increased photodetachment yield as the number of guanine increases, in line with the fact that positive holes are the most stable in guanine runs. This correlation between photodetachment yield and the stability of the base radical may be explained by tunneling of the electron through the repulsive Coulomb barrier. Theoretical calculations on dinucleotide monophosphates show that the HOMO and HOMO-1 orbitals are localized on the bases. The wavelength dependence of electron detachment yield was studied for dG63-. Maximum electron photodetachment is observed in the wavelength range corresponding to base absorption (260-270 nm). This demonstrates the feasibility of gas-phase UV spectroscopy on large DNA anions. The calculations and the wavelength dependence suggest that the electron photodetachment is initiated at the bases and not at the phosphates. This also indicates that, although direct photodetachment could also occur, autodetachment from excited states, presumably corresponding to base excitation, is the dominant process at 260 nm. Excited-state dynamics of large DNA strands still remains largely unexplored, and photo-oxidation studies on trapped DNA multiply charged anions can help in bridging the gap between gas-phase studies on isolated bases or base pairs and solution-phase studies on full DNA strands.  相似文献   

12.
Abstract— The 193 nm photoionization of aqueous indole, A'-meth-ylindole and tryptophan–as a function of pH and under several saturating gas conditions–has been studied by laser photolysis using optical and conductometric detection methods. Monophotonic ionization leads to production of the cation radicals and hydrated electrons, the quantum yield of electron ejection is 0.3–0.4. The cation radicals have pKa values of 4.5, <5 and 4.5 for indole, N -methylindole and tryptophan, respectively. Above these pH values, the cation radical deprotonate rapidly, having lifetimes of 1.0, ≅6 and 1.1 μs, respectively. Under N2O, neutral indolyl radical production is accompanied by formation of an OH adduct radical (<1 μs). The conductivity results in Ar- and N2O-saturated solution support the deprotonation mechanism and indicate that in the acidic pH range, the cation radical decays by release of protons with kinetics on the millisecond time scale.  相似文献   

13.
Release of bases form calf thymus DNA and three polynucleotides, induced by 20 ns excitation at 193 nm in aqueous solution at pH 7, was detected by HPLC. The quantum yields of formation of free bases (phi B) from double-stranded DNA (0.4 mM) are independent of intensity, indicating a one-quantum mechanism of N-glycosidic bond cleavage. The phi B values increase in the order guanine, thymine, adenine, cytosine, the latter being phi C approximately 7 x 10(-4) for double-stranded DNA under Ar and O2. The larger phi B values in N2O-saturated solution, e.g., phi C = 1.2 x 10(-3), are ascribed to additional base release via OH-adduct radicals. The phi B values of homopolynucleotides increase in the order poly(G), poly(A) and poly(C), e.g. phi C = 7 x 10(-3) under Ar, as do the efficiencies for base release per radical cation (eta B). A comparison of the eta B values with the efficiencies of single-strand breakage for poly(C), poly(A) and DNA shows a similar trend; both are markedly larger for pyrimidines than for purines. Pathways to undamaged bases, initiated from base radical cations, are proposed.  相似文献   

14.
No benefit from base stacking is observed for rates of electron transfer in DNA. This conclusion was drawn from experiments with a new DNA assay in which a radical cationic site, generated by strand cleavage, can be reduced by the guanine bases in the same DNA (the electron transfer is indicated by arrows in the diagram). The distance dependence of this electron transfer step is determined by the chemical yield of the reduction product.  相似文献   

15.
Photosensitized one-electron oxidation was applied to discriminate a specific base site of 5-methylcytosine (mC) generated in DNA possessing a partial sequence of naturally occurring p53 gene, using a sensitizing 2-methyl-1,4-naphthoquinone (NQ) chromophore tethered to an interior of oligodeoxynucleotide (ODN) strands. Photoirradiation and subsequent hot piperidine treatment of the duplex consisting of mC-containing DNA and NQ-tethered complementary ODN led to oxidative strand cleavage selectively at the mC site, when the NQ chromophore was arranged so as to be in close contact with the target mC. The target mC is most likely to be one-electron oxidized into the radical cation intermediate by the sensitization of NQ. The resulting mC radical cation may undergo rapid deprotonation and subsequent addition of molecular oxygen, thereby leading to its degradation followed by strand cleavage at the target mC site. In contrast to mC-containing ODN, ODN analogs with replacement of normal cytosine, thymine, adenine, or guanine at the mC site underwent less amount of such an oxidative strand cleavage at the target base site, presumably due to occurrence of charge transfer and charge recombination processes between the base radical cation and the NQ radical anion. Furthermore, well designed incorporation of the NQ chromophore into an interior of ODN could suppress a competitive strand cleavage at consecutive guanines, which occurred as a result of positive charge transfer. Thus, photosensitization by an NQ-tethered ODN led to one-electron oxidative strand cleavage exclusively at the target mC site, providing a convenient method of discriminating mC in naturally occurring DNA such as human p53 gene as a positive band on a sequencing gel.  相似文献   

16.
Double-stranded (ds) calf thymus DNA (0.4 mM), excited by 20 ns laser pulses at 248 nm, was studied in deoxygenated aqueous solution at room temperature and pH 6.7 in the presence of a sodium salt (10 mM). The quantum yields for the formation of hydrated electrons (phi c-), single-strand breaks (phi ssb) and double-strand breaks (phi dsb) were determined for various laser pulse intensities (IL). phi c- and phi ssb increase linearly with increasing IL; however, phi ssb has a tendency to reach saturation at high IL (greater than 5 X 10(6) Wcm-2). The ratio phi ssb/phi c-, representing the number of ssb per radical cation, is about 0.08 at IL less than or equal to 5 X 10(6) Wcm-2. For comparison, the number of ssb per OH radical reacting with dsDNA is 0.22. On going from argon to N2O saturation, phi ssb and phi dsb become larger by factors of approximately 5 and 10-15, respectively. This enhancement is produced by attack on DNA bases by OH radicals generated by N2O-scavenging of the photoelectrons. While phi ssb is essentially independent of the dose (Etot), phi dsb depends linearly on Etot in both argon- and N2O-saturated solutions. The linear dependence of phi dsb implies a square dependence of the number of dsb on Etot. This portion of dsb formation is explained by the occurrence of two random ssb, generated within a critical distance (h) in opposite strands. For both argon- and N2O-saturated solutions h was found to be of the order of 40-70 phosphoric acid diester bonds. On addition of electron scavengers such as 2-chloroethanol (or N2O plus t-butanol), phi dsb is similar to that in neat, argon-saturated solutions. Thus, hydrated electrons are not involved in the chemical pathway leading to laser-pulse-induced dsb of DNA.  相似文献   

17.
In this work we have produced the π-cation radicals of a number of nucleotides, dinucleoside phosphates, and DNA in aqueous glasses (8M NaCIO4) by photoionization and investigated these species by EPR spectroscopy. Results found for nucleotides and dinucleoside phosphates containing one type of DNA base, e.g. TpT, GpG, or dApdA, were used in the analysis of spectra found for mixed dinucleoside phosphates, e.g. TpdG. For TpdG and TpdA in neutral glasses photoionization takes place from the purine base and no transfer of charge to the pyrimidine base is found. In basic conditions both the adenine and thymine π-cations are observed in TpdA. In both neutral and basic conditions the results found for mixed dinucleoside phosphates containing guanine show that the guanine cation is formed preferentially by photolysis. This result was found to extend to DNA. Photolysis of DNA in 8M NaC1O4 produced principally the guanine cation. Computer simulations using parameters determined by other workers from a study of γ-irradiated oriented DNA closely match the spectrum found in this work attributed to the guanine cation in dinucleoside phosphates and DNA. This work thus confirms the presence of the guanine cation in γ-irradiated DNA.  相似文献   

18.
Guanosine (G) and deoxyguanosine (dG) radical cations can be generated in the gas phase by single electron transfer (SET) within nucleoside-dimethoxynaphthalenes (1-2) electron-bound heterodimers produced by fast atom bombardment in a four sector mass spectrometer. The nucleobase guanine is much more easily oxidized when it is linked to a ribose moiety. The radical cation dimers formed by G and dG with sinapinic acid behave as proton-bound heterodimers. The experiments mimic to some extent the migration of radical sites within stacking bases which causes DNA damaging through depurination processes.  相似文献   

19.
Abstract— Irradiation of aqueous solutions of plasmid DNA (pUC18) at pH 7.6 with 193 nm laser light results in low yields of prompt single strand breakage (air-saturated sample φssb= [1.5 ± 0.1] ± 10−4, argon-saturated sample φssb= [0.9 ± 0.1] ± 10−4). Treatment of the irradiated DNA samples with Escherichia coli formamidopyrimi-dine-DNA glycosylase (Fpg) protein results in an approximate 20-fold increase in the yield of single strand breakage (air-saturated sample φfpg= [33.1 ± 3.1] ± 10−4, argon-saturated sample φfpg= [23.8 ± 2.6] × 10 4). This result indicates that 193 nm light induces other modification) (most likely of the purine moieties) that are 20 times more abundant than prompt strand breakage within the DNA matrix.  相似文献   

20.
The one-electron oxidation of duplex DNA generates a nucleobase radical cation (electron "hole") that migrates long distances by a hopping mechanism. The radical cation reacts irreversibly with H2O or O2 to form oxidation products (damaged bases). In normal DNA (containing the four common DNA bases), reaction occurs most frequently at guanine. However, in DNA duplexes that do not contain guanine (i.e., those comprised exclusively of A/T base pairs), we discovered that reaction occurs primarily at thymine and gives products resulting from oxidation of the T-C5 methyl group and from addition to its C5-C6 double bond. This surprising result shows that it is the relative reactivity, not the stability, of a nucleobase radical cation that determines the nature of the products formed from oxidation of DNA. A mechanism for reaction is proposed whereby a thymine radical cation may either lose a proton from its methyl group or H2O/O2 may add across its double bond. In the latter case, addition may initiate a tandem reaction that converts both thymines of a TT step to oxidation products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号