首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A convenient preparation of (1R,2S,3R,4S)-3-(neopentyloxy)isoborneol (= (1R,2S,3R,4S)-3-(2,2-dimethyl-propoxy)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-ol; 1a ), a valuable chiral auxiliary, is described. The synthesis involves six steps starting from the readily available camphorquinone ( 5 ) and gives 1a in 48% overall yield. The key step is the chemoselective hydrolysis of the less hindered 1,3-dioxolane moiety in the camphorquinone di-acetal 4 .  相似文献   

2.
(R,R)-Butanediol (dichloromethyl)boronate ( 1 ) with 1 equiv. allylmagnesium halide yields (R,R)-2,3-butanediol (1S)-(1-chloro-3-butenyl)boronate ( 3 ) together with the diallylated product (R,R)-2,3-butanediol (1-allyl-3-butenyl)boronate ( 4 ). The formation of 4 is unprecedented in reactions of α-chloroboronic esters with Grignard reagents. With methylmagnesium bromide 3 yielded (R,R)-2,3-butanediol (1S)-(1-methyl-3-butenyl)boronate ( 5 ), which failed to hydrolyze with water. Hydrolysis of 3 yielded impure α-chloroboronic acid, which was esterified with pinacol and treated with methylmagnesium bromide to form 6 , which with (dichloromethyl)lithium followed by methylmagnesium bromide yielded diastereomeric boronic esters 7 and 8 . Oxidation by hydrogen peroxide yielded (2S,3S)- and (2R,3S)-3-methyl-5-hexen-2-ol ( 9 and 10 , ees unknown). Treatment of (s)-pinanediol allylboronate ( 11 ) with (dichloromethyl)lithium at −100°C followed by zinc chloride at up to 25°C has proceeded in the normal way to form (s)-pinanediol (1S)-(1-chloro-3-butenyl)-boronate ( 12 ), which has been elaborated via 13 , 14 , and 15 to (2S,3S)-3-methyl-5-hexen-2-ol ( 9 ) in 95% de.  相似文献   

3.
Chiral Building Blocks for Syntheses by Kolbe Electrolysis of Enantiomerically Pure β-Hydroxybutyric-Acid Derivatives. (R)- and (S)-Methyl-, and (R)-Trifluoromethyl-γ-butyrolactones, and -δ-valerolactones The coupling of chiral, non-racemic R* groups by Kolbe electrolysis of carboxylic acids R*COOH is used to prepare compounds with a 1.4- and 1.5-distance of the functional groups. The suitably protected β-hydroxycarboxylic acids (R)- or (S)-3-hydroxybutyric acid, (R)-4,4,4-trifluoro-3-hydroxybutyric acid (as acetates; see 1 – 6 ), and (S)-malic acid (as (2S,5S)-2-(tert-butyl)-5-oxo-1,3-dioxolan-4-acetic acid; see 7 ) are decarboxylatively dimerized or ‘codimerized’ with 2-methylpropanoic acid, with 4-(formylamino)butyric acid, and with monomethyl malonate and succinate. The products formed are derivatives of (R,R)-1,1,1,6,6,6-hexafluoro-2,5-hexanediol (see 8 ), of (R)-5,5,5-trifluoro-4-hydroxypentanoic acid (see 9,10 ), of (R)- and (S)-5-hydroxyhexanoic acid (see 11 ) and its trifluoro analogue (see 12, 13 ), of (S)-2-hydroxy- and (S,S)-2,5-dihydroxyadipic acid (see 23, 20 ), of (S)-2-hydroxy-4-methylpentanoic acid (‘OH-leucine’, see 21 ), and of (S)-2-hydroxy-6-aminohexanoic acid (‘OH-lysine’, see 22 ). Some of these products are further converted to CH3- or CF3-substituted γ- and δ-lactones of (R)- or (S)-configuration ( 14 , 16 – 19 ), or to an enantiomerically pure derivative of (R)-1-hydroxy-2-oxocyclopentane-1-carboxylic acid (see 24 ). Possible uses of these new chiral building blocks for the synthesis of natural products and their CF3 analogues (brefeldin, sulcatol, zearalenone) are discussed. The olfactory properties of (R)- and (S)-δ-caprolactone ( 18 ) are compared with those of (R)-6,6,6-trifluoro-δ-caprolactone ( 19 ).  相似文献   

4.
(+)-(1S, 3S, 6S, 8S)- and (?)-(1R, 3R, 6R, 8R)-2,7-dioxa-twista-4,9-diene. A synthesis and the determination of the sense of chirality of (+)-(1S, 3S, 6S, 8S)- and (?)-(1R, 3R, 6R, 8R)-2,7-dioxa-twista-4,9-diene ((+)- 5 and (?)- 5 , respectively) is described.  相似文献   

5.
An efficient synthesis of enantiomerically pure (R)- and (S)-2-(aminomethyl)alanine ((R)- and (S)-Ama) 1a and (R)- and (S)-2-(aminomethyl)leucine ((R)- and (S)-Aml) 1b is described (Schemes 1 and 2). Resolution of the racemic amino acids was achieved using L -phenylalanine cyclohexylamide ( 2 ) as chiral auxiliary. The free amino acids 1a, b were converted to the Nα-Boc,Nγ-Z-protected derivatives 11a, b (Scheme 3) ready for incorporation into peptides. Based on the three crystal structures of the diastereoisomeric peptides 8a, 8b , and 9b , the absolute configurations in both series were determined. β-Turn type-I geometries were observed for structures 8b and 9b , whereas 8a crystallized in an extended backbone conformation.  相似文献   

6.
Simple Conversion of (R)-3-Hydroxybutanoic Acid to the (S)-Enantiomer and its Lactone (–)-(S)-4-Methylixetan-2-one Condensation of ( R )-3-hydroxybutanoic acid (1) with ethyl orthoacetate gives a 2-ethoxy-substituted (1,3)dioxanone 2 which is thermally labile: at ca. 100°, two competing processes commence, one leading to ethyl ( R )-3-acetoxybutanoate ( 3 ), the other one - with complete inversion of configuration - to the ( S )-4-methylixetan-2-one ( 4 ) and ethyl acetate. These can be readily separated by fractional distillation. Thus, enantiomerically pure ( S )-3-hydroxybutanoic acid (ent- 1 ) and l-2-alkyl-3-hydroxybutanoic-acid derivatives (such as 6 and 8 ) become available from the biopolymer PHB, the precursor to the acid 1 .  相似文献   

7.
Enantiospecific Synthesis of (+)-(2R)- and (?)-(2S)-6-Ethyl-3,4-dihydro-2-methyl-4-oxo-2H-pyran-5-carboxylic Acid The two enantiomers (?)-(2S)- and (+)-(2R)-6-ethyl-3,4-dihydro-2-methyl-4-oxo-2H-pyran-5-carboxylic acid ((S)- and (R)- 7 ) have been synthesized from (+)-(3S) and (?)-(3R)-3-hydroxybutanoates, respectively (Scheme 1). By reduction and decarboxylation, the tetrahydro-2H-pyranols (2R, 4R, 6S)- and (2S, 4S, 6R)- 13 , respectively, were obtained with an enantiomeric excess of ≥ 93%.  相似文献   

8.
The reduction of prochiral ketones using chiral reducing reagents, prepared from lithium aluminum hydride and (-)-(1R, 2S, 3S, 5R)-10-anilinopinanediol (5) and (-)-(1R, 2S, 3S, 5R)-10-N-methylanilinopinanediol (6), affords chiral secondary alcohols in useful chemical yields (70 ~ 93%) but in low optical purity (8 ~ 33% ee). Modifiers 5 and 6 are synthesized from (lR)-(-)-β-pinene in three steps.  相似文献   

9.
We have isolated from the carpophores of Boletus satanas Lenz (Basidiomycetae) (2S,4S)-(+)-γ-hydroxynorvaline ( 1 ) and (2S,4R)-(?)-γ-hydroxynorvaline ( 2 ). The chirality of each diastereomer has been determined by chemical synthesis starting from optically active precursors and by application of different chiroptical methods. Gaschromatographic separation of the derived diastereomeric N-[(S)-α-methoxypropionyl]-lactones reveals that the optical purity of natural 2 is 88% whereas 1 exists as a partial racemate: (2S,4S): (2R,4R) = 3:2. Muscarine could not be detected in the carpophores of B. satanas, contrary to some literature data but basic substances of unknown structure are present in low concentration.  相似文献   

10.
Synthesis of (2S)-3-(2,4,5-trifluorophenyl)propane-1,2-diol by the Sharpless asymmetric epoxidation reaction has been achieved. 2,4,5-Trifluorobenzaldehyde with methyl 2-(triphenyl-λ5-phosphanylidene)acetate gave methyl (E)-3-(2,4,5-trifluorophenyl)acrylate in 83% yield. The reduction of ester group with DibalH followed by Sharpless asymmetric epoxidation gave ((2R,3R)-3-(2,4,5-trifluorophenyl)oxiran-2-yl)methanol. Pd/C-catalyzed hydrogenation of epoxy alcohol furnished (2S)-3-(2,4,5-trifluorophenyl)propane-1,2-diol with >90% ee and 71% yield.  相似文献   

11.
《Tetrahedron: Asymmetry》2007,18(18):2218-2226
The trans-configured fosfomycin analogue, diethyl (1S,2S)-1,2-epoxy-3-hydroxypropylphosphonate, was synthesised by the intramolecular Williamson reaction of diethyl (1S,2R)-1,3-dihydroxy-2-mesyloxypropylphosphonate. The cis-analogue was obtained as O-ethyl or O,O-diethyl (1R,2S)-1,2-epoxy-3-hydroxypropylphosphonates, when (1R,2R)-1,3-dihydroxy-2-mesyloxypropylphosphonate or its 3-O-trityl derivative were used as starting materials, respectively. The intramolecular Williamson cyclisations of diethyl (1S,2R)- and (1R,2S)-1-benzyloxy-3-hydroxy-2-mesyloxypropylphosphonates led to diethyl (1S,2S)- and (1R,2S)-2,3-epoxy-1-benzyloxypropylphosphonates, respectively, with the concomitant formation of diethyl (E)-1-benzyloxy-3-hydroxyprop-1-en-1-phosphonate. From diethyl (1S,2S)- and (1R,2S)-2,3-epoxy-1-benzyloxypropylphosphonates, enantiomerically pure diethyl (1S,2S)- and (1R,2S)-1,2-dihydroxypropylphosphonates were obtained by catalytic hydrogenation, while diethyl (1S,2S)- and (1R,2S)-3-acetamido-1,2-dihydroxypropylphosphonates were produced after epoxide ring opening with dibenzylamine, acetylation and hydrogenolysis.  相似文献   

12.
Starting from (R)-3-hydroxybutyric acid ((R)- 10 ) the C45- and C50-carotenoids (all-E,2S,2′S)-bacterioruberm ( 1 ), (all-E,2S,2′S)-monoanhydrobacterioruberin ( 2 ), (all-E,2S,2′S)-bisanhydrobacterioruberin ( 3 ), (all-E,2R,2′R)-3,4,3′,4′-tetrahydrobisanhydrobacterioruberin ( 5 ), and (all-E,S)-2-isopentenyl-3,4-dehydrorhodopin ( 6 ) were synthesized. By comparison of the chiroptical data of the natural and the synthetic compounds, the (2S)- and (2′S)-configuration of the natural products 1–3 and 6 was established.  相似文献   

13.
(+)-(S)-Streptenol A is synthesized by coupling a 1,3-dithiane with an optically pure epoxide. The absolute configuration of (+)-(S)-streptenol A is thereby correlated with that of (S)-malic acid. Stereoselective reduction of an oxime that could easily be prepared from streptenol A gave the (3S,5R)- and (3S,5S)-aminostreptenols, and after cyclization, configurationally pure 2,4-functionalized piperidine alkaloids.  相似文献   

14.
(R)- and (S)-4-Amino-3-methylbutanoic acids were synthesized in high yields via initial enantioselective hydrolysis of dimethyl 3-methylglutarate to methyl (R)-3-methylglutarate with pig liver esterase. The ester group was converted to an amine to give (R)-4-amino-3-methylbutanoic acid; the carboxylic acid was converted to an amine to give (S)-4-amino-3-methylbutanoic acid.  相似文献   

15.
The synthesis of potential hydroxy metabolites of the brain imaging agents methyl (1R,2S,3S,5S)-3-(4-iodophenyl)-8-methyl-8-azabicyclo[3.2.1]octane-2-carboxylate and methyl (1R,2S,3S,5S)-3-(4-iodophenyl)-8-(3-fluoropropyl)-8-azabicyclo[3.2.1]octane-2-carboxylate are reported. The nitration of iodophenyltropanes 1 or 2 with nitronium tetrafluoroborate afforded the nitro compounds 3 or 4 which were reduced with iron powder to the corresponding amino compounds 5 and 6 . The final hydroxylated products 7 and 8 were obtained via a modified Sandmeyer reaction.  相似文献   

16.
(+)-(1S, 3S, 6S, 8S)-and (?)-(1R, 3R, 6R, 8R)-4, 9-Twistadiene: Synthesis and Absolute Configuration A synthesis and the determination of the absolute configuration of (+)-(1S, 3S, 6S, 8S)- and (?)-(1R, 3R, 6R, 8R)-4, 9-twistadiene ((+)- and (?)- 4 , respectively) is described. Their chiroptical properties are compared with those of saturated twistane ((+)- and (?)- 5 ) as well as with those of the unsaturated and saturated 2, 7-dioxatwistane analogs (+)- and (?)- 9 , and (+)- and (?)- 10 , respectively, which also are compounds of known absolute configurations.  相似文献   

17.
Following a known procedure, a mixture of (?)-(2S,3R)- and (+)-(2R,3R)-2,3-epoxy-citronellols ( 5 ) was prepared from (?)-(R)-linalool ( 3 ) via epoxy alcohol 4 and then reduced to (?)-(R)-3-hydroxy-citronellol ( 6 ). Sensitized photooxygenation of (?)-(R)-diol 6 led in part to (?)-(R)-triol 8 which was cyclodehydrated by dilute acid to a mixture of diastereoisomeric tetrahydropyran-4-ols 9 and 10 . Dehydration of hydroxy ethers 9 and 10 afforded (?)-(S)-nerol oxide ( 11 ) and (+)-(R)-nerol oxide ( 12 ), respectively, with an optical purity of 91%. Nerol oxide isolated from Bulgarian rose oil (0.038%) proved to be racemic. These results shed some light on the formation of nerol oxide in plants.  相似文献   

18.
The synthesis and ee determination of diethyl 3-azido-2-hydroxypropylphosphonates from 2,3-epoxypropylphosphonates have been optimised. Enantiomerically enriched diethyl (R)- and (S)-2-hydroxy-3-(1,2,3-triazol-1-yl)propylphosphonates (R)-3aj and (S)-3ah as well as (S)-3j were synthesised from diethyl (R)- and (S)-2,3-epoxypropylphosphonates in a reaction sequence including azidolysis followed by 1,3-dipolar cycloaddition with selected alkynes.  相似文献   

19.
(?)-(S)-2-Hydroxy-β-ionone ( 33 ), (+)-(2 S, 6 S)-2-hydroxy-α-ionone ( 34 ), and their acetates 35 and 36 have been synthesized from (+)-(S)-6-methylbicyclo [4.3.0]-non-1-ene-3, 7-dione ( 3 ). The key intermediate (+)-(1 R, 3 S, 6 S)-2, 2, 6-trimethyl-7-oxobicyclo [4.3.0]non-3-yl acetate ( 7 ) was correlated with a degradation product of the pentacyclic triterpene ursolic acid ( 16 ). Compound 33 was also synthesized by an alternative route starting from (?)-trans-verbenol ( 42 ).  相似文献   

20.
Stereoselective synthesis of cruciferous indole phytoalexin (R)-(+)-1-methoxyspirobrassinin and its unnatural (S)-(−)-enantiomer was achieved by spirocyclization of 1-methoxybrassinin in the presence of (+)- and (−)-menthol and subsequent oxidation of the obtained menthyl ethers. Methanolysis of menthyl ethers in the presence of TFA afforded (2R,3R)-(−)-1-methoxyspirobrassinol methyl ether as well its unnatural (2S,3S)-, (2R,3S)-, and (2S,3R)-isomers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号