首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Experimental tests of various trace formulas, which in general relate the density of states for a given quantum mechanical system to the properties of the periodic orbits of its classical counterpart, for spectra of superconducting microwave billiards of varying chaoticity are reviewed by way of examples. For a two-dimensional Bunimovich stadium billiard the application of Gutzwiller's trace formula is shown to yield correctly locations and strengths of the peaks in the Fourier transformed quantum spectrum in terms of the shortest unstable classical periodic orbits. Furthermore, in two-dimensional billiards of the Limaçon family the transition from regular to chaotic dynamics is studied in terms of a recently derived general trace formula by Ullmo, Grinberg and Tomsovic. Finally, some salient features of wave dynamical chaos in a fully chaotic three-dimensional Sinai microwave billiard are discussed. Here the reconstruction of the spectrum is not as straightforward as in the two-dimensional cases and a modified trace formula as suggested by Balian and Duplantier will have eventually to be applied.  相似文献   

2.
We numerically study quantum mechanical features of the Bunimovich stadium billiard and the rational billiards which approach the former as the number of their sides increases. The statistics of energy levels and eigenfunctions of the rational billiards becomes indistinguishable from that of the Bunimovich stadium billiard below a certain energy. This fact contradicts the classical picture in which the Bunimovich stadium billiard is chaotic, but the rational billiard is pseudointegrable. It is numerically confirmed that the wave functions do not detect the fine structure, which is much smaller than the wavelength.  相似文献   

3.
We suggest that random matrix theory applied to a matrix of lengths of classical trajectories can be used in classical billiards to distinguish chaotic from non-chaotic behavior. We consider in 2D the integrable circular and rectangular billiard, the chaotic cardioid, Sinai and stadium billiard as well as mixed billiards from the Limaçon/Robnik family. From the spectrum of the length matrix we compute the level spacing distribution, the spectral auto-correlation and spectral rigidity. We observe non-generic (Dirac comb) behavior in the integrable case and Wignerian behavior in the chaotic case. For the Robnik billiard close to the circle the distribution approaches a Poissonian distribution. The length matrix elements of chaotic billiards display approximate GOE behavior. Our findings provide evidence for universality of level fluctuations—known from quantum chaos—to hold also in classical physics.  相似文献   

4.
We use a semiclassical approximation to study the transport through the weakly open chaotic Sinai quantum billiards which can be considered as the schematic of a Sinai mesoscopic device,with the diffractive scatterings at the lead openings taken into account.The conductance of the ballistic microstructure which displays universal fluctuations due to quantum interference of electrons can be calculated by Landauer formula as a function of the electron Fermi wave number,and the transmission amplitude can be expressed as the sum over all classical paths connecting the entrance and the exit leads.For the Sinai billiards,the path sum leads to an excellent numerical agreement between the peak positions of power spectrum of the transmission amplitude and the corresponding lengths of the classical trajectories,which demonstrates a good agreement between the quantum theory and the semiclassical theory.  相似文献   

5.
Z. D. Kvon 《JETP Letters》2002,76(8):537-542
A new system with dynamic chaos—2D lattice of single Sinai billiards coupled through quantum dots—is studied experimentally. Localization in such a system was found to be substantially suppressed, because the characteristic size of the billiard for g≤1 (g is conductance measured in e 2/h units) is the localization length rather than the de Broglie wavelength of an electron, as in the usual 2D electron system. Lattice ballistic effects (commensurate peaks in the magnetoresistance) for g?1, as well as extremely large magnetoresistance caused by the interference in chaotic electron trajectories, were found. Thus, this system is shown to be characterized by simultaneous existence of effects that are inherent in order (commensurate peaks of magnetoresistance), disorder (percolation charge transport), and chaos (weak localization in chaotic electron trajectories).  相似文献   

6.
We discuss the impact of recent developments in the theory of chaotic dynamical systems, particularly the results of Sinai and Ruelle, on microwave experiments designed to study quantum chaos. The properties of closed Sinai billiard microwave cavities are discussed in terms of universal predictions from random matrix theory, as well as periodic orbit contributions which manifest as scars in eigenfunctions. The semiclassical and classical Ruelle zeta-functions lead to quantum and classical resonances, both of which are observed in microwave experiments on n-disk hyperbolic billiards.  相似文献   

7.
Signs of quantum chaos in the spectra of linear Hamiltonian systems including scattering billiards of various configurations with kinks of the lateral surface have been experimentally studied. A billiard with kinks of the lateral surface at which the second derivative is indefinite constitutes a scattering K system. As a result, the spectrum of such a billiard and the corresponding model resonator becomes chaotic and the distribution of spectral intervals is close to a Wigner distribution. The spectral rigidity curves have been measured for a model microwave cavity whose shape is similar to the scattering billiard with kinks of the lateral surface. It has been found that the characteristics of the chaotic spectrum, the distribution of the spectral intervals, and the spectral rigidity curves for billiards with kinks of the lateral boundary exhibit signs of quantum chaos.  相似文献   

8.
An experiment is reported in which the Sinai quantum billiard and square-torus quantum billiard are compared for field chaos. In this mode of chaos, electromagnetic fields in a waveguide are analogous to the wave function. It is found that power loss in the square-torus guide exceeds that in the Sinai-billiard guide by approximately 3.5 dB, thereby illustrating larger field chaos for the square-torus quantum billiard than for the Sinai quantum billiard. Solutions of the Helmholtz equation are derived for the rectangular coaxial guide that illustrate that transverse electric or transverse magnetic modes exist in the guide provided the ratio of edge lengths of the outer rectangle to parallel edge lengths of the inner rectangle is rational. Eigenfunctions partition into four sets depending on even or odd reflection properties about Cartesian axis on which the concentric rectangles are oriented. These eigenfunctions are uniquely determined by four coaxial parameters and two eigen numbers. Justification of experimental findings is based on the argument that the rationals comprise a set of measure zero with respect to the irrationals. Consequently, from an observational point of view, these modes do not exist, which is in accord with the reported experiment. (c) 2000 American Institute of Physics.  相似文献   

9.
One of the central paradigms for classical and quantum chaos in conservative systems is the two-dimensional billiard in which particles are confined to a closed region in the plane, undergoing elastic collisions with the walls and free motion in between. We report the first realization of billiards using ultracold atoms bouncing off beams of light. These beams create the desired spatial pattern, forming an "optical billiard." We find excellent agreement between theory and our experimental demonstration of chaotic and stable motion in optical billiards, establishing a new testing ground for classical and quantum chaos.  相似文献   

10.
There are two known mechanisms that produce chaos in billiard systems. The first one, discovered by Ya. G. Sinai, is called dispersing, the second, found by the author, is called defocusing. The same mechanisms produce chaos for geodesic flows. Some results on two-dimensional billiards, which indicate that only these two mechanisms can produce chaos in Hamiltonian systems, are discussed.  相似文献   

11.
We consider the distribution of the (properly normalized) numbers of nodal domains of wave functions in 2D quantum billiards. We show that these distributions distinguish clearly between systems with integrable (separable) or chaotic underlying classical dynamics, and for each case the limiting distribution is universal (system independent). Thus, a new criterion for quantum chaos is provided by the statistics of the wave functions, which complements the well-established criterion based on spectral statistics.  相似文献   

12.
秦陈陈  杨双波 《物理学报》2014,63(14):140507-140507
研究了二维Sinai台球系统的经典与量子的对应关系,运用定态展开法和Gutzwiller的周期轨道理论对Sinai台球系统的态密度经傅里叶变换得到的量子长度谱进行分析,并把量子长度谱中峰的位置与其所对应的经典体系的周期轨道长度做对比,发现两者之间存在很好的对应关系.观察到了一些量子态局域在短周期轨道附近形成量子scarred态或量子superscarred态.还研究了同心与非同心Sinai台球系统的能级最近邻间距分布,发现同心Sinai台球系统是近可积的,非同心Sinai台球系统在θ=3π/8下,随两中心间距离的增加,能级最近邻间距分布将由近可积向维格那分布过渡.  相似文献   

13.
A new mechanism of weak chaos in triangular billiards has been proposed owing to the effect of cutting of beams of rays. A similar mechanism is also implemented in other polygonal billiards. Cutting of beams results in the separation of initially close rays at a finite angle by jumps in the process of reflections of beams at the vertices of a billiard. The opposite effect of joining of beams of rays occurs in any triangular billiard along with cutting. It has been shown that the cutting of beams has an absolute character and is independent of the form of a triangular billiard or the parameters of a beam. On the contrary, joining has a relative character and depends on the commensurability of the angles of the triangle with π. Joining always suppresses cutting in triangular billiards whose angles are commensurable with π. For this reason, their dynamics cannot be chaotic. In triangular billiards whose angles are rationally incommensurable with π, cutting always dominates, leading to weak chaos. The revealed properties are confirmed by numerical experiments on the phase portraits of typical triangular billiards.  相似文献   

14.
We report numerical results of an investigation of quantum transport for a weakly opened integrable circle and chaotic stadium billiards with a pair of conducting leads. While the statistics of spacings of resonance energies commonly follow the Wigner (GOE)-like distribution, the electric conductance as a function of the Fermi wavenumber shows characteristic noisy fluctuations associated with a typical set of classical orbits unique for both billiards. The wavenumber autocorrelation for the conductance is stronger in the stadium than the circle billiard, which we show is related to the length spectrum of classical short orbits. We propose an explanation of these contrasts in terms of the effect of phase decoherence due to the underlying chaotic dynamics.  相似文献   

15.
Using integrability to produce chaos: Billiards with positive entropy   总被引:4,自引:0,他引:4  
A new open class of convex 2 dimensional planar billiards with positive Lyapunov exponent almost everywhere is constructed. We introduce the notion of a focusing arc and show that such arcs can be used to build billiard systems with positive Lyapunov exponents. We prove that under smallC 6 perturbations, focusing arcs remain focusing and thereby show that perturbations of the Bunimovich stadium billiard have positive Lyapunov exponents.Partially supported by NSF grant DMS 8806067  相似文献   

16.
We investigate decay properties of correlation functions in a class of chaotic billiards. First we consider the statistics of Poincaré recurrences (induced by a partition of the billiard): the results are in agreement with theoretical bounds by Bunimovich, Sinai, and Bleher, and are consistent with a purely exponential decay of correlations out of marginality. We then turn to the analysis of the velocity-velocity correlation function: except for intermittent situations, the decay is purely exponential, and the decay rates scale in a simple way with the (uniform) curvature of the dispersing arcs. A power-law decay is instead observed when the system is equivalent to an infinite-horizon Lorentz gas. Comments are given on the behaviour of other types of correlation functions, whose decay, during the observed time scale, appears slower than exponential.  相似文献   

17.
A Kudrolli  S Sridhar 《Pramana》1997,48(2):459-467
We describe microwave experiments used to study billiard geometries as model problems of non-integrability in quantum or wave mechanics. The experiments can study arbitrary 2-D geometries, including chaotic and even disordered billiards. Detailed results on an L-shaped pseudo-integrable billiard are discussed as an example. The eigenvalue statistics are well-described by empirical formulae incorporating the fraction of phase space that is non-integrable. The eigenfunctions are directly measured, and their statistical properties are shown to be influenced by non-isolated periodic orbits, similar to that for the chaotic Sinai billiard. These periodic orbits are directly observed in the Fourier transform of the eigenvalue spectrum.  相似文献   

18.
Following recent work of Chernov, Markarian, and Zhang, it is known that the billiard map for dispersing billiards with zero angle cusps has slow decay of correlations with rate 1/n. Since the collisions inside a cusp occur in quick succession, it is reasonable to expect a much faster decay rate in continuous time. In this paper we prove that the flow is rapid mixing: correlations decay faster than any polynomial rate. A consequence is that the flow admits strong statistical properties such as the almost sure invariance principle, even though the billiard map does not. The techniques in this paper yield new results for other standard examples in planar billiards, including Bunimovich flowers and stadia.  相似文献   

19.
Generalized billiards describe nonequilibrium gas, consisting of finitely many particles, that move in a container, whose walls heat up or cool down. Generalized billiards can be considered both in the framework of the Newtonian mechanics and of the relativity theory. In the Newtonian case, a generalized billiard may possess an invariant measure; the Gibbs entropy with respect to this measure is constant. On the contrary, generalized relativistic billiards are always dissipative,and the Gibbs entropy with respect to the same measure grows under some natural conditions. In this article, we find the necessary and sufficient conditions for a generalized Newtonian billiard to possess a smooth invariant measure, which is independent of the boundary action: the corresponding classical billiard should have an additional first integral of special type. In particular,the generalized Sinai billiards do not possess a smooth invariant measure. We then consider generalized billiards inside a ball, which is one of the main examples of the Newtonian generalized billiards which does have an invariant measure. We construct explicitly the invariant measure, and find the conditions for the Gibbs entropy growth for the corresponding relativistic billiard both formonotone and periodic action of the boundary.  相似文献   

20.
 We introduce and prove a Separation Principle, similar in form to the familiar Uncertainty Principle of quantum mechanics, which separates the position and direction of any two phase points on distinct unfoldings of (non-parallel) trajectories on a polygonal billiard table with pockets. Applying this principle, we demonstrate that the number of orbit types (that is, classes of trajectories, up to parallelism) on a polygonal billiard table with area A and pockets of area a is strictly bounded above by . More generally, the same bound applies to any compact polyhedral surface with pockets at its vertices. If the boundary is empty (so that billiard trajectories are just geodesics), the bound is reduced by a factor of two to . We believe the Separation Principle will also have fundamental applications to other problems in the theory of billiards and related dynamical systems. Received: 28 December 2001 / Accepted: 9 April 2002 Published online: 4 September 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号