首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ge quantum dots were grown on Si(1 0 0)-(2 × 1) by femtosecond pulsed laser deposition at various substrate temperatures using a femtosecond Ti:sapphire laser. In situ reflection high-energy electron diffraction and ex situ atomic force microscopy were used to analyze the film structure and morphology. The morphology of germanium islands on silicon was studied at different coverages. The results show that femtosecond pulsed laser deposition reduces the minimum temperature for epitaxial growth of Ge quantum dots to ∼280 °C, which is 120 °C lower than previously observed in nanosecond pulsed laser deposition and more than 200 °C lower than that reported for molecular beam epitaxy and chemical vapor deposition.  相似文献   

2.
By a combination of prepatterned substrate and self-organized growth, InAs islands are grown on the stripe-patterned GaAs (100) substrate by solid-source molecular beam epitaxy. It is found that the InAs quantum dots can be formed either on the ridge or on the sidewall of the stripes near the bottom, depending on the structure of the stripes on the patterned substrate or molecular beam epitaxy growth conditions. When a InxGa1−xAs strained layer is grown first before InAs deposition, almost all the InAs quantum dots are deposited at the edges of the top ridge. And when the InAs deposition amount is larger, a quasi-quantum wire structure is found. The optical properties of the InAs dots on the patterned substrate are also investigated by photoluminescence.  相似文献   

3.
The compositional distribution of InAs quantum dots grown by molecular beam epitaxy on GaAs capped InAs quantum dots has been studied in this work. Upper quantum dots are nucleated preferentially on top of the quantum dots underneath, which have been nucleated by droplet epitaxy. The growth process of these nanostructures, which are usually called as quantum dots molecules, has been explained. In order to understand this growth process, the analysis of the strain has been carried out from a 3D model of the nanostructure built from transmission electron microscopy images sensitive to the composition.  相似文献   

4.
郭浩民  文龙  赵志飞  步绍姜  李新化  王玉琦 《中国物理 B》2012,21(10):108101-108101
We investigated the quantum dots-templated growth of a(0001) GaN film on a c-plane sapphire substrate.The growth was carried out in a radio-frequency molecular beam epitaxy system.The enlargement and coalescence of grains on the GaN quantum dots template was observed in the atom force microscopy images,as well as the more ideal surface morphology of the GaN epitaxial film on the quantum dots template compared with the one on the AlN buffer.The Ga polarity was confirmed by the reflected high energy electron diffraction patterns and the Raman spectra.The significant strain relaxation in the quantum dots-templated GaN film was calculated based on the Raman spectra and the X-ray rocking curves.Meanwhile,the threading dislocation density in the quantum dots-templated film was estimated to be 7.1×107cm-2,which was significantly suppressed compared with that of the AlN-buffered GaN film.The roomtemperature Hall measurement showed an electron mobility of up to 1860cm2 /V·s in the two-dimensional electron gas at the interface of the Al 0.25Ga0.75 N/GaN heterojunction.  相似文献   

5.
Both the peak position and linewidth in the photoluminescence spectrum of the InAs/GaAs quantum dots usually vary in an anomalous way with increasing temperature. Such anomalous optical behaviour is eliminated by inserting an In0.2Ga0.8As quantum well below the quantum dot layer in molecular beam epitaxy. The insensitivity of the photoluminescence spectra to temperature is explained in terms of the effective carrier redistribution between quantum dots through the In0.2Ga0.8As quantum well.  相似文献   

6.
The atomic structure of GaSb/GaP quantum dots grown via molecular beam epitaxy on a (100) GaP surface at epitaxy temperatures of 420–470°C is investigated. It is established that, depending on morphology of the GaP growth surface, the deposition of 1 ML of GaSb leads to the formation of strained Ga(Sb, P)/GaP or fully relaxed GaSb/GaP quantum dots. The obtained heterostructures exhibit high photoluminescence efficiency.  相似文献   

7.
The conditions to grow GaN quantum dots (QDs) by plasma-assisted molecular beam epitaxy will be examined. It will be shown that, depending on the Ga/N ratio value, the growth mode of GaN deposited on AlN can be either of the Stranski–Krastanow (SK) or of the Frank–Van der Merwe type. Accordingly, quantum wells or QDs can be grown, depending on the desired application. In the particular case of modified SK growth mode, it will be shown that both plastic and elastic strain relaxation can coexist. Growth of GaN QDs with N-polarity will also be discussed and compared to their counterpart with Ga polarity.  相似文献   

8.
Ten layers of self-assembled InMnAs quantum dots with InGaAs barrier were grown on high resistivity (1 0 0) p-type GaAs substrates by molecular beam epitaxy (MBE). The presence of ferromagnetic structure was confirmed in the InMnAs diluted magnetic quantum dots. The ten layers of self-assembled InMnAs quantum dots were found to be semiconducting, and have ferromagnetic ordering with a Curie temperature, TC=80 K. It is likely that the ferromagnetic exchange coupling of sample with TC=80 K is hole mediated resulting in Mn substituting In and is due to the bound magnetic polarons co-existing in the system. PL emission spectra of InMnAs samples grown at temperature of 275, 260 and 240 °C show that the interband transition peak centered at 1.31 eV coming from the InMnAs quantum dot blueshifts because of the strong confinement effects with increasing growth temperature.  相似文献   

9.
H.J. Meng 《Physics letters. A》2009,373(15):1379-1382
(In, Cr)As ferromagnetic semiconductor quantum dots (QDs) were grown by molecular beam epitaxy on GaAs (001) substrates. The growth temperature effects on structure and magnetism of the QDs were investigated systematically. The Cr2+3d4 states and quantum confined effect are assumed to play an important role in the room-temperature ferromagnetism of (In, Cr)As QDs.  相似文献   

10.
陈启明  晏长岭  曲轶 《发光学报》2019,40(2):171-176
由于1. 55μm波段广泛应用于通信领域,为了探索不同生长温度对InN量子点的形貌影响,并且实现自组装InN量子点在1. 55μm通信波段的发光,对InN量子点的液滴外延及物性进行了相关研究。首先利用射频等离子体辅助分子束外延(PA-MBE)技术在GaN模板上,采用液滴外延方法在3种温度下生长了InN量子点结构。生长过程中靠反射高能电子衍射(RHEED)对样品进行原位监控。原子力显微镜(AFM)表征结果表明随着生长温度升高,量子点尺寸变大,密度减小。在生长温度350℃和400℃下,观测到了量子点;当温度高于450℃时,未观测到InN量子点。当生长温度为400℃时,量子点形貌最好,密度为6×10~8/cm~2,对400℃下生长的InN量子点进行了变温PL测试,成功得到InN量子点在1. 55μm波段附近的光致发光,并且随着测试温度的升高,量子点的发光峰位发生了先红移后蓝移最后又红移的S型曲线变化,这种量子点有望在未来应用于量子通信领域。  相似文献   

11.
The local structure around the indium atoms in uncapped and capped InxGa1?xN quantum dots has been studied by In K‐edge extended X‐ray absorption fine structure (EXAFS) spectroscopy. The samples were grown by metal organic vapour phase epitaxy. The EXAFS was successfully applied to study the structural properties of buried quantum dots which are not optically active. The analysis revealed that capping the quantum dots with GaN does not affect the bond distances of the In—N and In—Ga, but makes the In—In distance shorter by 0.04 Å.  相似文献   

12.
A technique for determination of InAs quantum dots bimodal distribution has been developed. This technique is based on vapor-chemical etching of quantum dot arrays coated with thin GaAs layers and on combined investigation of the morphology and photoluminescence spectra of etched quantum-size structures. It has been shown that, in some growth modes of quantum-size heterostructures by metal-organic vapor phase epitaxy, bimodal arrays of large and small quantum dots are formed. The surface concentration of large and small dots has been established to be about 2 × 109 and 3 × 1010 cm−2, respectively.  相似文献   

13.
Microphotoluminescence from GaN/AlN quantum dots grown by molecular beam epitaxy on sapphire substrates along the (0001) axis has been studied. To produce quantum dots of different average sizes and densities, the nominal amount of deposited GaN has been varied from 1 to 4 ML. The density of the quantum dots was about 1011 cm−2, which corresponded to about 103 quantum dots excited in the experiments. The photo-luminescence from the quantum dots was linearly polarized and the maximum polarization degree (15%) has been observed for the sample with the lowest amount of deposited GaN. The photoluminescence intensity from this sample under continuous laser excitation decreased by more than two orders of magnitude for about 30 min and then stabilized. The photoluminescence intensity from other samples under continuous excitation remained constant. We suggest that a rather high polarization degree is caused by anisotropy in the strain and shape of the quantum dots formed near the dislocations, which also act as the centers of nonradiative recombination.  相似文献   

14.
We have investigated the optical properties of InAs/GaAs (1 1 3)A quantum dots grown by molecular beam epitaxy (MBE) with different growth rates by photoluminescence spectroscopy (PL) as a function of the excitation density and the sample temperature (10–300 K). Reflection high-energy electron diffraction (RHEED) is used to investigate the formation process of InAs quantum dots (QDs). A redshift of the InAs QDs PL band emission was observed when the growth rate was increased. This result was explained by the increase of the InAs quantum dot size with increasing growth rate. A significant redshift was observed when the arsenic flux was decreased. The evolution of the PL peak energy with increasing temperature has showed an S-shaped form due to the localization effects and is attributed to the efficient relaxation process of carriers in different InAs quantum dots and to the exciton transfer localized at the wetting layer.  相似文献   

15.
In this paper an analysis of tendencies of Ge on Si quantum dots nanoheterostructures’ usage in different optoelectronic devices such as, for example, solar cells and photodetectors of visible and infra-red regions is carried out; a complex mathematical model for calculation of dependency on growth conditions of self-organized quantum dots of Ge on Si grown using the method of molecular beam epitaxy parameters is described. Ways of segregation effect and underlying layers’ influence are considered. It is shown that for realization of good device characteristics quantum dots should have high density, small sizes, uniformity, and narrow size distribution function. The desirable parameters of arrays of square and rectangular quantum dots for device application are attainable under certain growth conditions.  相似文献   

16.
Raman scattering by optical phonons in unstrained Ge quantum dots obtained in GaAs/ZnSe/Ge/ZnSe structures was studied using molecular beam epitaxy. A shift in the E 1, E 1+Δ1 resonance energy due to the quantization of the spectrum of electron and hole states in quantum dots was observed. The properties observed were explained with the use of a simplest model of localization with allowance for the spectrum of Ge electron states.  相似文献   

17.
We fabricated GaAs/AlGaAs quantum dots by droplet epitaxy, and obtained the geometries of the dots by scanning transmission electron microscopy. Post‐growth thermal annealing is essential for the optical activation of quantum dots grown by droplet epitaxy. We measured the emission energy shifts of the dots and the underlying superlattice by post‐ growth thermal annealing, and specified the emission from dots by selectively etching the structure down to a low layer of quantum dots. We studied the influence of the degree of annealing on the optical properties of the dots from the peak shifts of the superlattice, since the superlattice has a uniform and well‐defined geometry. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
We report on the optical characteristics of InAs quantum dots based on the InP(1 0 0) substrate grown by gas source molecular beam epitaxy without assisting any other methods. The photoluminescence was carefully investigated by adjusting the thickness of InAs layers and the growth temperature. A wide range of emitting peaks is obtained with the increase in the thickness of InAs layers. In addition, we find that the morphology and shape of quantum dots also greatly depend on InAs layers. The images of atomic force microscopy show that the quantum dots like forming into quantum dashes elongated along the [0 1 ?1] direction when the thickness of InAs layers increased. A critical thickness of formation quantum dots or quantum dash is obtained. At the same time, we observe that the growth temperature also has a great impact on the emission wavelength peaks. High qualities of InAs/InP(1 0 0) quantum dots providing their emission wavelength in 1.55 μm are obtained, and good performances of quantum dots lasers are fabricated.  相似文献   

19.
In this paper, GaAs thin film has been deposited on thermally desorbed (1 0 0) GaAs substrate using laser molecular beam epitaxy. Scanning electron microscopy, in situ reflection high energy electron diffraction and in situ X-ray photoelectron spectroscopy are applied for evaluation of the surface morphology and chemistry during growth process. The results show that a high density of pits is formed on the surface of GaAs substrate after thermal treatment and the epitaxial thin film heals itself by a step flow growth, resulting in a smoother surface morphology. Moreover, it is found that the incorporation of As species into GaAs epilayer is more efficient in laser molecular beam epitaxy than conventional molecular beam epitaxy. We suggest the growth process is impacted by surface chemistry and morphology of GaAs substrate after thermal treatment and the growth mechanisms are discussed in details.  相似文献   

20.
The crystal structure of new self-assembled InSb/AlAs and AlSb/AlAs quantum dots grown by molecularbeam epitaxy has been investigated by transmission electron microscopy. The theoretical calculations of the energy spectrum of the quantum dots have been supplemented by the experimental data on the steady-state and time-resolved photoluminescence spectroscopy. Deposition of 1.5 ML of InSb or AlSb on the AlAs surface carried out in the regime of atomic-layer epitaxy leads to the formation of pseudomorphically strained quantum dots composed of InAlSbAs and AlSbAs alloys, respectively. The quantum dots can have the type-I and type-II energy spectra depending on the composition of the alloy. The ground hole state in the quantum dot belongs to the heavy-hole band and the localization energy of holes is much higher than that of electrons. The ground electron state in the type-I quantum dots belongs to the indirect XXY valley of the conduction band of the alloy. The ground electron state in the type-II quantum dots belongs to the indirect X valley of the conduction band of the AlAs matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号