首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dispersion properties of a transverse electric (TE) surface waves propagating along the interface between a magneto-quantum plasma-relativistic beam system and vacuum are studied by using the quantum hydrodynamic model. The general dispersion relations are derived and analyzed in some special cases of interest. Moreover, the effects of density gradients for the beam and plasma on the dispersion properties of surface waves are investigated. The kind of dispersion relations depends strongly on the ambient magnetic field Bo via the gyro-frequency ωc, the quantum parameters, and the width of the plasma layer as well as the relativistic factor for the electron beam. It is found that the quantum effects play a crucial role to facilitate the propagation of TE surface waves.  相似文献   

2.
The dispersion relation for general dust low frequency electrostatic surface waves propagating on an interface between a magnetized dusty plasma region and a vacuum is derived by using specular reflection boundary conditions both in classical and quantum regimes. The frequency limit ω«ωci«ωce is considered and the dispersion relation for the Dust-Lower-Hybrid Surface Waves (DLHSW's) is derived for both classical and quantum plasma half-space and analyzed numerically. It is shown that the wave behavior changes as the quantum nature of the problem is considered.  相似文献   

3.
安兴涛  刁淑萌 《物理学报》2014,63(18):187304-187304
硅烯是由单层硅原子形成的二维蜂窝状晶格结构,具有石墨烯类似的电学性质,由于硅烯中存在比较强的自旋轨道耦合而备受关注.本文利用非平衡格林函数方法研究了门电压控制的硅烯量子线中电子输运性质和能带结构.研究发现,只有在较强的门电压下,而且硅烯量子线具有较好的锯齿形或扶手椅形边界而不存在额外硅原子时,硅烯量子线中才存在无能隙的自旋极化边缘态.另外,计算结果表明这种门电压控制的硅烯量子线中边缘态在每个能谷处自旋是极化的.这些计算结果将为实验上利用电场制作硅烯纳米结构提供理论支持.  相似文献   

4.
Majeed Ur Rehman  A A Abid 《中国物理 B》2017,26(12):127304-127304
The present study pertains to the trilayer graphene in the presence of spin orbit coupling to probe the quantum spin/valley Hall effect. The spin Chern-number C_s for energy-bands of trilayer graphene having the essence of intrinsic spin–orbit coupling is analytically calculated. We find that for each valley and spin, C_s is three times larger in trilayer graphene as compared to single layer graphene. Since the spin Chern-number corresponds to the number of edge states,consequently the trilayer graphene has edge states, three times more in comparison to single layer graphene. We also study the trilayer graphene in the presence of both electric-field and intrinsic spin–orbit coupling and investigate that the trilayer graphene goes through a phase transition from a quantum spin Hall state to a quantum valley Hall state when the strength of the electric field exceeds the intrinsic spin coupling strength. The robustness of the associated topological bulk-state of the trilayer graphene is evaluated by adding various perturbations such as Rashba spin–orbit(RSO) interaction αR, and exchange-magnetization M. In addition, we consider a theoretical model, where only one of the outer layers in trilayer graphene has the essence of intrinsic spin–orbit coupling, while the other two layers have zero intrinsic spin–orbit coupling.Although the first Chern number is non-zero for individual valleys of trilayer graphene in this model, however, we find that the system cannot be regarded as a topological insulator because the system as a whole is not gaped.  相似文献   

5.
李杰森  李志兵  姚道新 《中国物理 B》2012,21(1):17302-017302
We study an array of graphene nano sheets that form a two-dimensional S=1/2 Kagome spin lattice used for quantum computation. The edge states of the graphene nano sheets are used to form quantum dots to confine electrons and perform the computation. We propose two schemes of bang-bang control to combat decoherence and realize gate operations on this array of quantum dots. It is shown that both schemes contain a great amount of information for quantum computation. The corresponding gate operations are also proposed.  相似文献   

6.
本文建立了光抽运多层石墨烯表面等离子体模型,计算了光抽运多层石墨烯等离子体传播系数的实部和吸收系数,讨论了动量弛豫时间、温度、层数、准费米能级对表面等离子体传播系数的实部和吸收系数的影响.研究结果表明,光抽运多层石墨烯使其动态电导率的实部在太赫兹频段内出现负值时,石墨烯表面等离子体实现增益.通过光抽运剥离层石墨烯和含有底层石墨烯结构表面等离子体传播系数和吸收系数比较,表明光抽运剥离层石墨烯能更有效地实现表面等离子体的增益.同时,在低温下,光抽运具有合适层数的石墨烯比光抽运单层石墨烯能获得更大的表面等离子体增益.  相似文献   

7.
徐刚毅  李爱珍 《物理学报》2007,56(1):500-506
研究了量子级联激光器有源核中界面声子的色散关系和静电势分布. 根据有源核内部的平移不变性导出了界面声子的色散关系. 计算显示有源核中的界面声子可以分为体声子和表面声子模式. 体声子的色散曲线构成一系列准连续的声子子带,其静电势分布于整个有源核并呈现出Bloch波的特征. 表面声子的色散曲线位于各体声子子带的带隙内,其静电势局域在有源核一侧. 这些结果将有助于量子级联激光器和子带跃迁激光器的优化设计.  相似文献   

8.
The propagation of surface modes in warm non-magnetized quantum plasma is investigated.The surface modes are assumed to propagate on the plane between vacuum and warm quantum plasma.The quantum hydrodynamic model including quantum diffraction effect(the Bohm potential) and quantum statistical pressure is used to derive a new dispersion relation of surface modes.The new dispersion relation of surface modes is analyzed in some special interesting cases.It is shown that the dispersion relation can be reduced to the earlier results in some special cases.The results indicate that the quantum effects can facilitate the propagation of surface modes in such a semi-bounded plasma system.This work is helpful to understand the physical characteristics of the surface modes and the bounded quantum plasma.  相似文献   

9.
为了分析干法刻蚀对应变多量子阱(SMQWs)发光特性的影响,采用感应耦合等离子体(ICP)刻蚀技术对金属有机物化学气相沉积(MOCVD)生长的InGaN/AIGaN应变多量子阱覆盖层表面刻蚀了约95 nm。通过光致发光(PL)特性表征发现,干法刻蚀后量子阱光致发光强度较未刻蚀量子阱光致发光强度提高了近3倍。干法刻蚀后,量子阱表面呈现高低起伏状形貌,粗糙度提高,出射光在起伏状粗糙形貌表面反复散射,从而逃逸概率增大,有助于光致发光强度增强。理论计算结果得出表面形貌变化引起的量子阱光致发光强度增强因子约为1.3倍。另外,由于所采用的感应耦合等离子体功率较小,刻蚀损伤深度几乎不会达到量子阱阱层,然而干法刻蚀过程中Ar离子隧穿到量子阱阱层内部可能形成新的发光中心,从而使量子阱的发光强度得到提高。  相似文献   

10.
InAs self‐assembled quantum dots (QDs) were grown by molecular beam epitaxy on (001) GaAs substrate. Uncapped and capped QDs with GaAs and graphene layers were studied using atomic force microscopy and Raman spectroscopy. Graphene multi‐layer was grown by chemical vapor deposition and transferred on InAs/GaAs QDs. It is well known that the presence of a cap layer modifies the size, shape, and density of the QDs. According to the atomic force microscopy study, in contrast to the GaAs capped sample, which induce a dramatic decrease of the density and height of dots, graphene cap layer sample presents a slight influence on the surface morphology and the density of the islands compared with the uncapped one. The difference shown in the Raman spectra of the samples is due to change of strain and alloy disorder effects on the QDs. Residuals strain and the relaxation coefficients have been investigated. All results confirm the best crystalline quality of the graphene cap layer dots sample relative to the GaAs capped one. So graphene can be used to replace GaAs in capping InAs/GaAs dots. To our knowledge, such study has not been carried out until now. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper,we investigate the quantum correlation of coupled qubits which are initially in maximally entangled mixed states in a squeezed vacuum reservoir.We compare and analyze the effects of squeezed parameters on quantum discord and quantum concurrence.The results show that in a squeezed vacuum reservoir,the quantum discord and quantum concurrence perform with completely opposite behaviors with the change of squeezed parameters.Quantum discord survives longer with the increase of squeezed amplitude parameter,but entanglement death is faster on the contrary.The results also indicate that the classical correlation of the system is smaller than quantum discord in a vacuum reservoir,while it is bigger than quantum discord in a squeezed vacuum reservoir.The quantum discord and classical correlation are more robust than quantum concurrence in the two reservoir environments,which indicates that the entanglement actually is easily affected by decoherence and quantum discord has a stronger ability to avoid decoherence in a squeezed vacuum reservoir.  相似文献   

12.
采用第一性原理方法计算Li(110)、(100)和(111)三个表面方向3至30层自由薄膜的表面能和氢原子的吸附能.随着层厚变化出现量子振荡现象,即量子尺寸效应.重点计算Li(110)表面吸附氢原子吸附高度、吸附氢原子前后费米能级处的态密度和功函数.这些量都随着层厚变化出现明显的量子振荡,且与表面能或吸附能的振荡有明显的相关性.计算发现Li(110)薄膜表面的功函数由于吸附氢原子而降低了约0.9 eV,吸附的氢原子拉低了最外层Li原子和真空层的静电势,导致吸附氢原子后功函数下降.  相似文献   

13.
嵇英华  刘咏梅 《中国物理 B》2013,22(2):20305-020305
In this paper, we investigate the quantum correlation of coupled qubits which are initially in maximally entangled mixed states in squeezed vacuum reservoir. We compare and analyse the effects of squeezed parameters on quantum discord and quantum concurrence. The results show that in squeezed vacuum reservoir, the quantum discord and quantum concurrence perform completely opposite behaviors to the change of squeezed parameters. Quantum discord survives longer with the increase of squeezed amplitude parameter, but entanglement death turns faster on the contrary. The results also indicate that the classical correlation of the system is smaller than quantum discord in vacuum reservoir, while it is bigger than quantum discord in squeezed vacuum reservoir. The quantum discord and classical correlation are more robust than quantum concurrence in the two reservoir environments, which indicates that the entanglement actually is easily affected by decoherence and quantum discord has stronger ability to avoid decoherence in squeezed vacuum reservoir.  相似文献   

14.
The surface potentials of few-layer graphene (FLG) films in high vacuum and ambient conditions have been investigated by employing electrostatic force microscopy. It is found that the surface potential of FLG films in ambient air has a constant large depression compared to that measured in a high vacuum. Our experimental results indicate that the shift is most likely caused by the presence of ambient adsorbates on the outmost graphene surfaces. The surface potentials increase with the number of graphene layers and approach the bulk value for five or more graphene layers in high vacuum as well as in ambient air. Since the contribution of the surface adsorbates is a constant value, we further show that the thickness dependence of the surface potential can be sufficiently explained by the nonlinear Thomas-Fermi Theory in both conditions.  相似文献   

15.
Graphene nanostructures are promising candidates for future nanoelectronics and solid-state quantum information technology. In this review we provide an overview of a number of electron transport experiments on etched graphene nanostructures. We briefly revisit the electronic properties and the transport characteristics of bulk, i.e., two-dimensional graphene. The fabrication techniques for making graphene nanostructures such as nanoribbons, single electron transistors and quantum dots, mainly based on a dry etching ??paper-cutting?? technique are discussed in detail. The limitations of the current fabrication technology are discussed when we outline the quantum transport properties of the nanostructured devices. In particular we focus here on transport through graphene nanoribbons and constrictions, single electron transistors as well as on graphene quantum dots including double quantum dots. These quasi-one-dimensional (nanoribbons) and quasi-zero-dimensional (quantum dots) graphene nanostructures show a clear route of how to overcome the gapless nature of graphene allowing the confinement of individual carriers and their control by lateral graphene gates and charge detectors. In particular, we emphasize that graphene quantum dots and double quantum dots are very promising systems for spin-based solid state quantum computation, since they are believed to have exceptionally long spin coherence times due to weak spin-orbit coupling and weak hyperfine interaction in graphene.  相似文献   

16.
谭振兵  马丽  刘广同  吕力  杨昌黎 《物理学报》2011,60(10):107204-107204
在2到50 K温度范围内测量了单层石墨烯量子霍尔平台与平台之间转变的标度律关系. 发现石墨烯的标度律指数κ不是普适的,在低温段的κ大约是0.13,在高温段的κ大约是0.33. 这一结果进一步验证了石墨烯中长程散射的主导地位. 关键词: 石墨烯 量子霍尔效应 标度律  相似文献   

17.
李明  陈阳  郭光灿  任希锋 《物理学报》2017,66(14):144202-144202
近年来表面等离激元得到了越来越多的关注和研究,得益于其能把电磁场束缚在金属-介质界面附近的亚波长尺度范围内.本文回顾了近年来表面等离激元在量子信息领域中的理论和实验研究,包括表面等离激元的基本量子性质、表面等离激元量子回路、在量子尺度下与物质的相互作用及其潜在应用.量子表面等离激元开辟了对表面等离激元基本物理性质研究的新方向,可以应用于高度集成化的量子集成光学回路,同时也可以用来增强光与量子发光体的相互作用.  相似文献   

18.
杨光敏  徐强  李冰  张汉壮  贺小光 《物理学报》2015,64(12):127301-127301
超级电容器是一种利用界面双电层储能或在电极材料表面及近表面发生快速可逆氧化还原反应而储能的装置, 其特点是功率密度高、循环寿命长. 制备出兼有高能量密度的电极材料是当前超级电容器研究的重点. 以提高电容储能为目标, 通过掺杂N原子来调制石墨烯的电子结构, 使用基于密度泛函理论的第一原理计算了不同N掺杂构型石墨烯的态密度和能带结构, 拟合出了石墨烯的量子电容, 分析了量子电容储能提升的原因.  相似文献   

19.
潘洪哲  徐明  陈丽  孙媛媛  王永龙 《物理学报》2010,59(9):6443-6449
采用基于密度泛函理论的广义梯度近似(GGA),对不同尺寸(N=2—11)的单层正三角锯齿型石墨烯量子点(ZN -GNDs)的结构进行优化,得到与实验数据较好符合的晶格常数,进一步计算得到不同尺寸下体系的自旋多重度、磁矩、电子态密度以及自旋电子密度.结果表明:所有体系都呈现金属性,在尺寸较小的体系中量子尺寸效应对电子结构的影响比较明显;与单层石墨烯片一样,sp2杂化作用和非键态电子在量子点中仍起到非常重要的作用;费米能级上有自旋向上的电子分布,体系的 关键词: 石墨烯 量子点 电子结构 磁性  相似文献   

20.
在20 mK的极低温下测量了石墨烯纳米带量子点的电子输运性质,观测到清晰的库仑阻塞菱形块和对应量子点激发态的电导峰.对库仑阻塞近邻电导峰间距和峰值进行了统计分析,发现其统计分布分别满足无规矩阵理论描述的Wigner-Dyson分布和Porter-Thomas分布,说明石墨烯纳米带量子点在低温下出现了量子混沌现象.还讨论了这种长方形量子点中量子混沌的可能成因. 关键词: 石墨烯纳米带 量子点 库仑阻塞 量子混沌  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号