首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
胡博  王健捷  肖霞  于湛  赵震 《化学通报》2024,87(6):685-392
随着全球能源消耗的不断增长和环境污染问题的日益严重,寻找清洁、高效的CO2利用路径成为研究热点。甲醇由于用途广泛,既是重要的化工原料,也是一种新型清洁能源。CO2催化加氢制甲醇过程不仅实现CO2减排,还是碳资源循环利用的有效途径之一,对解决能源紧缺和环境问题具有重要意义。高活性、高选择性和高稳定性的CO2加氢制甲醇催化剂的开发一直是该过程的核心技术。本文综述了二氧化碳加氢制甲醇的研究进展,主要介绍了反应机理和催化剂,并以Cu基催化剂重点总结了活性位、载体和助剂对催化性能的影响,最后对二氧化碳加氢制甲醇的应用前景进行了展望。  相似文献   

2.
ZnO-ZrO2固溶体催化剂上CO2高选择性加氢制甲醇   总被引:1,自引:0,他引:1  
CO2引起的气候变化已引起全世界的关注,但同时CO2也是一种可持续的碳资源.将CO2转化为高附加值的燃料或化学品不仅可以解决CO2的问题,还可变废为宝得到有用的化学品.CO2加氢制甲醇是实现这一过程的理想选择之一,因为甲醇不仅是很好的燃料,还可转化得到烯烃、芳烃等高附加值化学品,需要强调的是整个过程所需的氢气是利用太阳能等可再生能源通过光催化、光电催化或电解水制氢得到.使用煤或天然气经合成气用CuZnOAl2O3催化剂合成甲醇已工业化50年左右,甲醇选择性可达99%,但该催化剂应用于CO2加氢制甲醇时,较强的逆水煤气变换副反应致使甲醇选择性只有60%左右,另外,反应生成的水会加速Cu基催化剂的失活.因此,开发新型高选择性催化体系显得尤为必要,世界上很多科学家展开了新型催化剂的研发,如Cu/ZnO/ZrO2,Pd/ZnO,"georgeite"Cu,Cu(Au)/CeOx/TiO2,Ni-Ga,MnOx/Co3O4催化剂等,但这几类催化剂体系上甲醇选择性都不超过60%,CO2加氢制甲醇选择性低的问题一直没有解决.近期,中国科学院大连化学物理研究所李灿院士课题组开发了一种不同于传统金属催化剂的双金属固溶体氧化物催化剂ZnO-ZrO2,在近似工业条件下(5.0 MPa,24000 mL/(g h),H2/CO2=3/1~4/1,320~315oC),当CO2单程转化率超过10%时,甲醇选择性仍保持在90%左右,是目前同类研究中综合水平最好的结果.研究表明,该催化剂的固溶体结构特征提供了双活性中心反应位点,Zn和Zr,其中H2和CO2分别在Zn位和原子相邻的Zr位上活化,在CO2加氢过程中表现出了协同作用,从而可高选择性地生成甲醇.原位红外-质谱同位素实验及DFT理论计算结果表明,表面HCOO*和H3CO*是反应主要的活性中间物种.该催化剂反应连续运行500 h无失活现象,还具有极好的耐烧结稳定性和一定的抗硫能力,表现出了良好的工业应用前景.传统甲醇合成Cu基催化剂要求原料气含硫低于0.5 ppm,而该催化剂的抗硫能力无疑可使原料气净化成本大大降低,在工业应用方面表现出潜在的优势.  相似文献   

3.
化石燃料的利用为人类社会带来了前所未有的繁荣和发展. 然而, 化石燃料燃烧引起的过量的二氧化碳(CO2)排放导致全球气候变化和海洋酸化; 而且作为一种有限的资源, 化石燃料的消耗将迫使人们寻找其它碳源以维持可持续的发展. 利用可再生能源获取电能分解水制得的绿色氢气(H2)与捕集后的CO2反应制成甲醇, 不仅能有效利用工业废气中多余的CO2, 还能获取清洁、 可再生的甲醇化学品, 该过程的技术核心是开发高效稳定的CO2加氢制甲醇催化剂. 本文综合评述了现有研究关注较多的多相催化CO2加氢制甲醇催化剂的反应机理和构效关系, 总结了目前多相催化CO2加氢制甲醇催化剂(Cu基催化剂、 贵金属与双金属催化剂、 氧化物催化剂以及其它新型催化剂)的设计与合成方面的研究进展, 最后对该领域所面临的机遇和挑战进行了展望.  相似文献   

4.
近年来,随着空气中二氧化碳含量的不断升高,二氧化碳的催化转化在科研界和工业界受到了广泛关注.非均相催化的二氧化碳加氢合成甲醇是实现二氧化碳资源化利用的重要手段之一,具有良好的应用前景.本文系统概述了非均相催化二氧化碳加氢合成甲醇反应的近期研究进展,重点介绍了金属催化剂和金属氧化物催化剂,对反应机理进行了阐述,并对该领域仍待解决的问题和发展前景进行了展望.  相似文献   

5.
CO2大量排放导致的全球气候变化对人类社会的发展造成不利影响,控制CO2排放是摆在全人类面前的一项紧迫任务.利用太阳能等可再生能源获得的绿氢将CO2转化为以甲醇为代表的燃料和化学品,即太阳燃料合成,不仅能够实现CO2的减排利用,而且能够将可再生能源储存于液体燃料,对缓解全球气候变化和能源危机具有重要的战略意义.CO2加氢制甲醇是衔接当下化石能源时代和未来可再生能源时代的重要桥梁,亦是实现碳达峰、碳中和目标切实可行的路径之一.高效、稳定的CO2加氢制甲醇催化剂是实现这条路径的关键因素.在众多催化剂中,以ZnZrOx为代表的固溶体催化剂因具有高甲醇选择性、良好热稳定性、可抗硫中毒特性而备受关注.因此,设计和开发更高效的ZnZrOx固溶体催化剂对于CO2加氢制甲醇规模化应用尤为重要.本文分别利用蒸氨法和共沉淀法制得了相同组成的ZnZrOx固溶体催化剂,并用于催化CO...  相似文献   

6.
程文强  宋夫交  高佳  葛艳  许琦 《合成化学》2020,28(4):308-313
以Zn(NO3)2·6H2O、Zr(NO3)4·5H2O为原料,Na2CO3为沉淀剂,采用并流共沉淀法制备了一系列不同Zn/Zr摩尔比的双金属氧化物催化剂,其结构经XRD、BET、Raman光谱、TEM和H2-TPR表征。结果表明:Zn0.2Zr0.8Ox催化剂为固溶体结构,比表面积最大达46.2 m^2·g^-1,还原性能良好。以催化CO2加氢合成甲醇为目标反应,对不同Zn/Zr摩尔比的催化剂进行性能测试,并考察了反应温度和反应时间对Zn0.2Zr0.8Ox催化剂性能的影响。结果表明:反应温度250℃、空速GHSV为12000 mL·g^-1h^-1、反应压力2 MPa和H2/CO2(体积比)=3/1时,Zn0.2Zr0.8Ox固溶体催化剂催化活性最高,二氧化碳转化率达到了3.5%、甲醇选择性高达75.4%,甲醇收率达到2.6%,且催化剂能够稳定运行100 h而不失活。  相似文献   

7.
二氧化碳加氢合成甲醇铜基催化剂表面组成的研究   总被引:5,自引:0,他引:5  
本文分别采用XRD、ESR、XPS和XAES等技术对于二氧化碳加氢低压合成甲醇用CuO,CuO-ZnO,CuO-ZnO-Al_2O_3,CuO-ZnO-ZrO_2催化剂在不同条件下表面Cu、Zn、Al、Zr的存在价态进行了深入分析。实验发现催化剂在还原前Cu以Cu ̄2+存在,在还原后和反应状态下以Cu ̄0存在;Zn在还原后和反应状态下有部分被还原为Zn ̄(2-δ)(0<δ<2),Zr和Al仍保持其还原前价态。催化剂的表面化学组成为:Cu ̄0/Zn(2-δ) ̄+/Zr ̄4+/Al ̄3+/O ̄2-。  相似文献   

8.
铜基催化剂可被广泛应用于CO2加氢制甲醇,其催化活性高度依赖载体.本文通过St?ber法合成了SiO2纳米微球,将其作为载体制备了Cu-Zn O@Si O2催化剂;将该催化剂应用于CO2加氢制甲醇,并与常规共沉淀法制备的Cu-Zn O催化剂进行了对比.通过X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)、氢气程序升温还原(H2-TPR)和二氧化碳程序升温脱附(CO2-TPD)等手段对催化剂进行了表征.结果表明,Cu-Zn O@Si O2催化剂具有更高的Cu分散性和CO2吸附能力,Si O2的加入提高了催化剂表面Cu+/Cu0的比例,从而影响了催化性能.研究发现,在H2/CO2摩尔比为3,230℃,2.0 MPa和气体体积空速为3600 m L·g  相似文献   

9.
纳米催化材料的性能主要由粒子尺寸、形貌和界面决定,即活性位点的电子及几何结构.尺寸、形貌可控的纳米催化材料的合成及其反应性能的研究,即催化剂的构效关系,一直是催化领域的研究热点.氧化物负载的金属催化剂广泛应用于多相催化反应过程.基于氧化铈优异的氧化还原性能, Cu/CeO2催化剂在CO氧化、N2O消除、水气变换、甲醇合成等反应中表现出优异性能.其中,通过铜物种与氧化铈表面化学键合形成的金属-载体界面通常被认为是催化活性中心.铜物种和氧化铈的相互作用主要体现在氧化铈固定铜物种,而铜物种促进氧化铈的氧化还原能力,涉及Cu2+/Cu+/Cu0和Ce3+/Ce4+之间电子的传输和转移.Cu/CeO2催化剂活性位的原子结构与金属-载体相互作用程度密切相关.氧化铈形貌和铜负载量是决定界面电子和几何结构的重要因素.常见的纳米氧化铈形貌包括纳米粒子(多面体)、纳米棒和纳米立方体,可分别选择性暴露(111)、(110)和(100)...  相似文献   

10.
Catalytic hydrogenation of CO2 to methanol is an important chemical process owing to its contribution in alleviating the impacts of the greenhouse effect and in realizing the requirement for renewable energy sources. Owing to their excellent synergic functionalities and unique optoelectronic as well as catalytic properties, transition metal/ZnO (M/ZnO) nanocomposites have been widely used as catalysts for this reaction in recent years. Development of size-controlled synthesis of metal/oxide complexes is highly desirable. Further, because it is extremely difficult to achieve the strong-metal-support-interaction (SMSI) effect when the M/ZnO nanocomposites are prepared via physical methods, the use of chemical methods is more favorable for the fabrication of multi-component catalysts. However, because of the requirement for an extra H2 reduction step to obtain the active metallic phase (M) and surfactants to control the size of nanoparticles, most M/ZnO nanocomposites undergo two- or multi-step synthesis, which is disadvantageous for the stable catalytic performance of the M/ZnO nanocomposites. In this work, we demonstrate facile one-pot synthesis of M/ZnO (M = Pd, Au, Ag, and Cu) nanocomposites in refluxed ethylene glycol as a solvent, without using any surfactants. During the synthesis process, Pd and ZnO species can stabilize each other from further aggregation by reducing their individual surface energies, thereby achieving size control of particles. Besides, NaHCO3 serves as a size-control tool for Pd nanoparticles by adjusting the alkaline conditions. Ethylene glycol serves as a mild reducing agent and solvent owing to its capacity to reduce Pd ions to generate Pd crystals. The nucleation and growth of Pd particles are achieved by thermal reduction, while the ZnO nanocrystals are formed by thermal decomposition of Zn(OAc)2. X-ray diffraction patterns of the M/ZnO and ZnO were analyzed to study the phase of the nanocomposites, and the results show that no impurity phase was detected. Transmission electron microscopy (TEM) was used to study the morphology and structural properties. In addition, X-ray photoelectron spectroscopy analysis was performed to further confirm the formation of M/ZnO hybrid materials, and the results confirm SMSI between Pd and ZnO. Inductively coupled plasma mass spectrometry was used to check the actual elemental compositions, and the results show that the detected atomic ratios of Pd/Zn were consistent with the values in the theoretical recipe. To investigate the effects of the Pd/Zn molar ratios and the added amount of NaHCO3 on Pd size, the average sizes of Pd particles were calculated, and the results were confirmed by TEM observation. The Cu/ZnO/Al2O3 composite is a widely known catalyst for hydrogenation of CO2 to methanol, and other M/ZnO composites are also catalytic for this reaction. Therefore, different M/ZnO hybrids were further studied as catalysts for hydrogenation of CO2 to methanol, among which Pd/ZnO (1 : 9) demonstrated the best performance (30% CO2 conversion, 69% methanol selectivity, and 421.9 gmethanol·(kg catalyst·h)-1 at 240 ℃ and 5 MPa. The outstanding catalytic performance may be explained by the following two factors: first, Pd is a good catalyst for the dissociation of H2 to give active H atoms, and second, SMSI between Pd and ZnO favors the formation of surface oxygen vacancies on ZnO. Moreover, most M/ZnO composites exhibit excellent performance in methanol selectivity, especially the Au/ZnO catalyst, which has the highest methanol selectivity (82%) despite having the lowest CO2 conversion. Hopefully, this work would provide a simple route for synthesis of M/ZnO nanocomposites with clean surfaces for catalysis.  相似文献   

11.
二氧化碳选择性加氢反应不仅能减少二氧化碳排放, 而且能够制备多种含碳产物, 可以作为生产高附加价值化学品与燃料的平台化合物. 然而, 由于二氧化碳的高化学惰性、 碳-碳偶联过程的高能垒和诸多的竞争反应, 开发高效的纳米催化剂以促进二氧化碳的活化并转化为多样性的产物显得至关重要. 最近, 基于氧化铟的纳米催化剂在催化二氧化碳加氢方面受到广泛关注, 主要由于其成本低廉, 且具有丰富的氧缺陷位点, 可有效吸附并活化二氧化碳和氢气. 为深入了解反应机理并设计更高性能的潜在纳米催化剂, 需对氧化铟基纳米催化剂在二氧化碳加氢方面的研究进展进行总结. 本综述首先总结了不同晶型的氧化铟及其与金属氧化物或金属纳米粒子形成的复合催化剂用于催化二氧化碳选择性加氢制备C1产物的性能. 随后, 探讨了氧化铟与不同类型的沸石的复合物用于催化二氧化碳加氢制备C2+产物的性能. 最后, 提出了目前氧化铟基纳米催化剂在催化二氧化碳选择性加氢方面存在的挑战和未来的发展方向. 希望本文能够为设计具有高活性、 高选择性和高稳定性催化二氧化碳加氢的新型氧化铟基纳米催化剂提供一些思路.  相似文献   

12.
13.
采用共沉淀法,用助剂TiO2对CuO-ZnO-Al2O3催化剂改性,TiO2由钛酸正丁酯水解而得,并考察了其在CO2催化加氢制甲醇反应中的催化性能.在反应温度260℃、压力2.6 MPa、H2∶CO2 =3∶1(体积比)、SV=3600 mL/(g·h)条件下,与空白样CuO-ZnO-Al2O3比较,结果显示,TiO2...  相似文献   

14.
担载铂催化剂用于硝基苯催化加氢制对氨基苯酚的研究   总被引:4,自引:0,他引:4  
刘竹青  胡爱琳 《分子催化》2000,14(2):97-101
研究了以活性炭、γA12O3、γ-A12O3-TiO2为载体,用浸渍法制备的铂含 量为1%的担载铂催化剂,用于硝基苯催化加氢制对氨基苯酚。发现Pt/γ-A12O3-TiO2催化剂有较高的活性、选择性和较长的寿命,催化剂循环使用10次后,对氨基酚的率仍高于80%,优于常用的Pt/C催化剂 。测定了催剂的比表面积、孔结构以 及活性金属铂的分散度,发现孔结构与催化剂性能之间没有规律性的关系;而铂在γ-A12  相似文献   

15.
分别以清洁及氧悠Cu(100)表面作为金属态铜和部分氧化态铜的表面模拟,用键级守恒-Mores势法研究了两种表面上CO2加氢制甲醇反应的能量学,计算结果表明,在两种表面上,CO2加氢制甲醇反应的优势反应途径均为“CO2,s→HCOOs→H2COs→CH3Os→CH3OHs”与清洁铜表面上的相应基元步骤相比,在Cu(100)-p(2×2)O表面上甲醇合成反应各基元步骤具有更低的活化能;HCOOs是含  相似文献   

16.
将二氧化碳(CO2)催化加氢转化为具有高附加值的烃类化合物,既可减缓大气中CO2浓度的攀升速度,又符合可持续发展战略,对环境和社会均具有重要意义。本文综述了Fe基催化剂上CO2加氢制C2+烃的研究进展,着重介绍了反应路径及机理、催化剂研制及反应器设计,展望了CO2制烃的研究前景。  相似文献   

17.
采用溶胶-凝胶自燃烧法,以柠檬酸为燃料制备了多种CuO-ZnO/Al2O3催化剂.利用N2静态吸附(BET)、X射线衍射(XRD)、扫描电子显微镜(SEM)、X-射线光电子能谱(XPS)和H2程序升温还原(H2-TPR)等方法研究了柠檬酸与硝酸盐比例关系对催化剂物化性质,形貌和还原性能的影响.并将其用于二氧化碳加氢制甲醇反应,考察催化剂的CO2转化率,甲醇选择性以及甲醇时空收率等催化性能.实验结果表明,当柠檬酸用量等于化学计量比时,CuO-ZnO/Al2O3催化剂的催化性能最好,当柠檬酸用量大于化学计量比时,催化性能次之,且变化不大,但当柠檬酸用量小于化学计量比时,催化性能明显降低.这一结果与其物化性质和还原性能有关,当柠檬酸用量等于或大于化学计量比时,催化剂中CuO颗粒较小,分散均匀,且分散度高.  相似文献   

18.
以LaCo1-xGaxO3为前驱体,还原后得到的Co/La2O3-La4Ga2O9复合氧化物催化剂,用于CO2加氢直接制乙醇。通过XRD、XPS、TPD和TEM等技术对催化剂结构进行了表征,采用微型固定床反应器在230-290℃、3 MPa、空速(GHSV)为3000 mL/(gcat·h)和H2/CO2进料物质的量比为3.0的条件下,考察了该Co/La-Ga-O复合氧化物用于CO2加氢制乙醇的催化性能。结果显示,该Co/La-Ga-O复合氧化物催化剂对生成乙醇具有很高的选择性。与LaCoO3相比,Ga的掺杂可抑制甲烷的形成,促进醇类(特别是乙醇)的生成。当Co/Ga比为7:3时,还原后的LaCo1-xGaxO3催化剂体现出最好的催化性能,CO2转化率为9.8%,总醇选择性达到74.7%,其中,液相产物中的乙醇质量分数可达到88.1%。基于实验结果推测,该催化剂上Co0和Coδ+的协同作用促使CO2选择性加氢生成乙醇。  相似文献   

19.
王丹君 《分子催化》2011,25(2):124-129
分别以碳酸铵为沉淀剂采用共沉淀-蒸氨法(CAE)和以碳酸铵(CCA)、碳酸钠(CCS)为沉淀剂采用常规共沉淀法制备了三种Cu/ZnO/Al2O3催化剂,并运用XRD,BET,TPR和N2O滴定技术对催化剂进行了表征.结果表明:采用共沉淀-蒸氨法制备的催化剂具有较小的颗粒尺寸、较大的Cu(0)比表面积;以碳酸铵为沉淀剂常...  相似文献   

20.
采用浸渍法制备了CuO/TiO_2负载型催化剂,并将其用于CO2加氢制甲醇反应。重点考察了铜的负载量对催化剂性能的影响,并对其物化性能和催化性能之间的关系进行了讨论。结果发现,随着铜负载量的增加,催化剂中金属铜的比表面先增加后减小,当铜的负载量为10%(质量百分数)时达到最大值。催化剂的表面碱性位数量随铜含量的增加持续减小,中等碱位和强碱位的强度下降。当铜的负载量不高于10%时,CO2的转化率与铜的比表面积呈线性关系。甲醇选择性与催化剂的表面碱位性质有关,过强的碱性位会降低甲醇选择性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号