首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Considering the cosmological constant as the pressure, this study addresses the laws of thermodynamics and weak cosmic censorship conjecture in the Reissner-Nordstr?m-AdS black hole surrounded by quintessence dark energy under charged particle absorption. The first law of thermodynamics is found to be valid as a particle is absorbed by the black hole. The second law, however, is violated for the extremal and near-extremal black holes, because the entropy of these black hole decrease. Moreover, we find that the extremal black hole does not change its configuration in the extended phase space, implying that the weak cosmic censorship conjecture is valid. Remarkably, the near-extremal black hole can be overcharged beyond the extremal condition under charged particle absorption. Hence, the cosmic censorship conjecture could be violated for the near-extremal black hole in the extended phase space. For comparison, we also discuss the first law, second law, and the weak cosmic censorship conjecture in normal phase space, and find that all of them are valid in this case.  相似文献   

2.
As a charged fermion drops into a BTZ black hole, the laws of thermodynamics and the weak cosmic censorship conjecture are investigated in both the normal and extended phase space, where the cosmological parameter and renormalization length are regarded as extensive quantities. In the normal phase space, the first and second law of thermodynamics, and the weak cosmic censorship are found to be valid. In the extended phase space, although the first law and weak cosmic censorship conjecture remain valid, the second law is dependent on the variation of the renormalization energy d K. Moreover, in the extended phase space, the configurations of extremal and near-extremal black holes are not changed, as they are stable, while in the normal phase space, the extremal and near-extremal black holes evolve into non-extremal black holes.  相似文献   

3.
The first law of black hole thermodynamics has been shown to be valid in the extended phase space.However,the second law and the weak cosmic censorship conjecture have not been investigated extensively.We investigate the laws of thermodynamics and the weak cosmic censorship conjecture of an AdS black hole with a global monopole in the extended phase space in the case of charged particle absorption.It is shown that the first law of thermodynamics is valid,while the second law is violated for the extremal and near-extremal black holes.Moreover,we find that the weak cosmic censorship conjecture is valid only for the extremal black hole,and that it can be violated for the near-extremal black holes,which is different from the previous results.  相似文献   

4.
Shuxuan Ying 《中国物理C(英文版)》2020,44(12):125101-125101-9
Recently, the non-trivial solutions for 4-dimensional black holes of Einstein-Gauss-Bonnet gravity had been discovered. In this paper, considering a charged particle entering into a 4-dimensional Gauss-Bonnet-Maxwell black hole, we calculate the black hole thermodynamic properties using the Hamilton-Jacobi equation. In the normal phase space, the cosmological constant and Gauss-Bonnet parameter are fixed, the black hole satisfies the first and second laws of thermodynamics, and the weak cosmic censorship conjecture (WCCC) is valid. On the other hand, in the case of extended phase space, the cosmological constant and Gauss-Bonnet parameter are treated as thermodynamic variables. The black hole also satisfies the first law of thermodynamics. However, the increase or decrease in the black hole's entropy depends on some specific conditions. Finally, we observe that the WCCC is violated for the near-extremal black holes in the extended phase space.  相似文献   

5.
By throwing a test charged particle into a Reissner-Nordstrom (RN) black hole, we test the validity of the first and second laws of thermodynamics and the weak cosmic censorship conjecture (WCCC) with two types of boundary conditions: the asymptotically anti-de Sitter (AdS) space and a Dirichlet cavity wall placed in an asymptotically flat space. For the RN-AdS black hole, the second law of thermodynamics is satisfied, and the WCCC is violated for both extremal and near-extremal black holes. For the RN black hole in a cavity, the entropy can either increase or decrease depending on the change in the charge, and the WCCC is satisfied/violated for the extremal/near-extremal black hole. Our results indicate that there may be a connection between the black hole thermodynamics and the boundary condition imposed on the black hole.  相似文献   

6.
We obtain a magnetically charged regular black hole in general relativity. The source to the Einstein field equations is nonlinear electrodynamic field in a physically reasonable model of nonlinear electrodynamics (NED). “Physically” here means the NED model is constructed on the basis of three conditions: the Maxwell asymptotic in the weak electromagnetic field limit; the presence of vacuum birefringence phenomenon; and satisfying the weak energy condition (WEC). In addition, we analyze the thermodynamic properties of the regular black hole in two ways. According to the usual black hole thermodynamics, we calculate the heat capacity at constant charge, from which we know the smaller black hole is more stable. We also employ the horizon thermodynamics to discuss the thermodynamic quantities, especially the heat capacity at constant pressure.  相似文献   

7.
In this study, we apply two methods to consider the variation of massive black holes in both normal and extended thermodynamic phase spaces. The first method considers a charged particle being absorbed by the black hole, whereas the second considers a shell of dust falling into it. With the former method, the first and second laws of thermodynamics are always satisfied in the normal phase space; however, in the extended phase space, the first law is satisfied but the validity of the second law?of?thermodynamics depends upon the model parameters. With the latter method, both laws are valid. We argue that the former method's violation of the second law of thermodynamics may be attributable to the assumption that the change of internal energy of the black hole is equal to the energy of the particle. Finally, we demonstrate that the event horizon always ensures the validity of weak cosmic censorship in both phase spaces; this means that the violation of the second law of thermodynamics, arising under the aforementioned assumption, does not affect the weak cosmic censorship conjecture. This further supports our argument that the assumption in the first method is responsible for the violation and requires deeper treatment.  相似文献   

8.
It has been shown that the quasinormal modes of perturebated fields can be used to investigate the validity of strong cosmic censorship(SCC).Relevant issues for Reissner-Nordstrom-de Sitter(RN-dS)black holes and Born-Infeld-de Sitter black holes have been discussed.In this paper,we investigate SCC in an asymptotic RN-dS black hole with logarithmic nonlinear electromagnetic field perturbed by massless scalar fields.It has been argued that SCC can be violated in a near-extremal RN-dS black hole.However,we find that the NLED effect can rescue SCC for a near-extremal logarithmic-de Sitter black hole.Compared with Born-Infeld model,we find that the NLED effect has similar behavior.  相似文献   

9.
陈菊华  王永久 《中国物理 B》2011,20(3):30401-030401
Recently,considerable progress has been made in understanding the early universe by loop quantum cosmology.Modesto et al.investigated the loop quantum black hole(LQBH)using improved semiclassical analysis and they found that the LQBH has two horizons,an event horizon and a Cauchy horizon,just like the Reissner-Nordstr¨om black hole.This paper focuses on the dynamical evolution of a massless scalar wave in the LQBH background.By investigating the relation between the complex frequencies of the massless scalar field and the LQBH parameters using the numerical method,we find that the polymeric parameter P makes the massless scalar field decay more quickly and makes the ground scalar wave oscillate slowly.However,the polymeric parameter P causes the frequency of the high harmonic massless scalar wave to shift according to its value.We also find that the loop quantum gravity area gap parameter a 0 causes the massless scalar field to decay more slowly and makes the period of the massless scalar field wave become longer.In the complex ω plane,the frequency curves move counterclockwise when the polymeric parameter P increases and this spiral effect is more obvious for a higher harmonic scalar wave.  相似文献   

10.
In this study, we investigate the effect of nonlinear electrodynamics on the shadows of charged, slowly rotating black holes with the presence of a cosmological constant. Rather than the null geodesic of the background black hole spacetime, the trajectory of a photon, as a perturbation of the nonlinear electrodynamic field, is governed by an effective metric. The latter can be derived by analyzing the propagation of a discontinuity of the electromagnetic waveform. Subsequently, the image of the black hole and its shadow can be evaluated using the backward ray-tracing technique. We explore the properties of the resultant black hole shadows of two different scenarios of nonlinear electrodynamics, namely, the logarithmic and exponential forms. In particular, the effects of nonlinear electrodynamics on the optical image are investigated, as well as the image's dependence on other metric parameters, such as the black hole spin and charge. The resulting black hole image and shadow display rich features that potentially lead to observational implications.  相似文献   

11.
In this work we consider black hole solutions to Einstein's theory coupled to a nonlinear power-law electromagnetic field with a fixed exponent value. We study the extended phase space thermodynamics in canonical and grand canonical ensembles, where the varying cosmological constant plays the role of an effective thermodynamic pressure. We examine thermodynamical phase transitions in such black holes and find that both first- and second-order phase transitions can occur in the canonical ensemble while, for the grand canonical ensemble, Hawking–Page and second-order phase transitions are allowed.  相似文献   

12.
By analyzing the propagation of discontinuity in nonlinear electrodynamics, we numerically investigate the related black hole shadows of recently derived rotating black hole solutions in \begin{document}$f(R) $\end{document} gravity. In this context, the geodesic motion of the relevant perturbations is governed by an effective geometry, which is closely related to the underlying spacetime metric. We derive the effective geometry, and the latter is used to determine the trajectory of the propagation vector of an arbitrary finite discontinuity in the electrodynamic perturbations, namely, the photon. Subsequently, the image of the black hole is evaluated using the ray-tracing technique. Moreover, we discuss the physical relevance of metric parameters, such as the nonlinear coupling, spin, and charge, by studying their impact on the resultant black hole shadows.  相似文献   

13.
We search for a possible relationship between weak gravity conjecture (WGC) and conformal field theory (CFT) in hyperscaling violating and Kerr-Newman-AdS black holes. We deal with the critical points of the black hole systems using the correlation function introduced in CFT and discuss WGC conditions using the imaginary part of the energy obtained from the critical points and their poles. Under the assumptions \begin{document}$ z=1 $\end{document}, \begin{document}$ d=1 $\end{document}, and \begin{document}$ \theta\rightarrow0^{-} $\end{document}, we link WGC to hyperscaling violating black holes owing to the existence of \begin{document}$ r_{H} $\end{document} values larger and smaller than one. For the second black hole system, we study the conditions of WGC for Kerr-Newman-AdS black holes using rotation and radius parameters. Then, we show that the conditions of WGC are satisfied when the charged particle near the hyperscaling violating and Kerr-Newman black holes is \begin{document}$ \frac{1}{a} $\end{document} with a ratio \begin{document}$ \frac{a}{\ell}\ll 1 $\end{document}.  相似文献   

14.
On the basis of a charged BTZ black hole, we add an extra term in the metric function to describe the contribution from nonlinear electrodynamics. In this way we artificially construct a (2 + 1)-dimensional black hole in general relativity coupled with a nonlinear electrodynamics source. The thermodynamic quantities and Smarr formula are derived. It is found that this black hole has TS criticality like that of an RN-AdS black hole. Further modifying the metric function, we obtain a (2 + 1)-dimensional black hole possessing PV critical behaviors similar to that of van der Waals fluid. To our knowledge, this is the first example of (2 + 1)-dimensional black holes having this kind of critical behavior.  相似文献   

15.
朱云峰  余洪伟 《物理学报》2002,51(9):1933-1936
通过对在单极子荷电黑洞背景中有质量标量场后期演化的研究,发现振荡反幂函数的衰减方式支配了有质量标量场的后期衰减.有质量标量场在单极子荷电黑洞时空背景中的后期衰减比在无整体单极子的ReissnerNordstrm时空度规下的后期衰减更快  相似文献   

16.
王波波 《中国物理 B》2008,17(2):467-472
In this paper the entropy of a toroidal black hole due to a scalar field is investigated by using the DLM scheme. The entropy is renormalized to the standard Bekenstein-Hawking formula with a one-loop correction arising from the higher curvature terms of the gravitational action. For the scalar field, the renormalized Newton constant and two renormalized coupling constants in the toroidal black hole are the same as those in the Reissner-Nordstrom black hole except for other one.  相似文献   

17.
We study the massless scalar quasinormal frequencies of an asymptotically flat static and spherically symmetric black hole with a nonzero magnetic charge in four-dimensional extended scalar-tensor-Gauss–Bonnet theory. The results show that the real part of the quasinormal frequency becomes larger and the imaginary part becomes smaller with increasing the magnetic charge or the angular harmonic index. The existence of magnetic charges will reduce the damping of scalar perturbation, but increase the frequency. We also study the absorption cross-section of the scalar field in this black hole. We find that its curve will become lower as the magnetic charge increases, i.e. the magnetic charge will weaken the absorption capacity of the black hole. Meanwhile, the high-frequency limit of the total absorption cross-section is just the area of black hole shadow.  相似文献   

18.
Treating the cosmological constant as a dynamical variable, we investigate the thermodynamics and weak cosmic censorship conjecture(WCCC) of a charged Ad S black hole(BH) in the Rastall gravity. We determine the energy momentum relation of charged fermion at the horizon of the BH using the Dirac equation. Based on this relation, it is shown that the first law of thermodynamics still holds as a fermion is absorbed by the BH. However, the entropy of both the extremal and near-extremal BH decreases in the irreversible process, which means that the second law of thermodynamics is violated.Furthermore, we verify the validity of the WCCC by the minimum values of the metric function h(r) at its final state. For the extremal charged Ad S BH in the Rastall gravity, we find that the WCCC is always valid since the BH is extreme. While for the case of near-extremal BH, we find that the WCCC could be violable in the extended phase space(EPS), depending on the value of the parameters of the BH and their variations.  相似文献   

19.
胡亚鹏  张靖仪  赵峥 《物理学报》2007,56(2):683-685
以Reissner-Nordstrom黑洞(R-N黑洞)为例,从黑洞热力学定律出发,对R-N黑洞中的带电粒子的量子隧穿效应进行了重新分析.将作用量的虚部重写成黑洞热力学定律的形式后,发现在Parikh工作框架下的量子隧穿效应与黑洞热力学的第一、第二定律有潜在的联系;而且,如果认为量子隧穿过程为可逆过程,则量子隧穿效应中的结果与黑洞热力学第一、第二定律是一致的.换而言之,Parikh的结论只对可逆过程成立. 关键词: Reissner-Nordstrom黑洞 黑洞热力学定律 隧穿 可逆过程  相似文献   

20.
陈菊华  王永久 《中国物理 B》2010,19(6):60401-060401
In this paper, using the third-order WKB approximation, we investigate the quasinormal frequencies of the scalar field in the background of a five-dimensional Lovelock black hole. We find that the ultraviolet correction to Einstein theory in the Lovelock theory makes the scalar field decay more slowly and oscillate more quickly, and the cosmological constant makes the scalar field decay more slowly and oscillate more slowly in the Lovelock black hole background.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号