首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
乙烯是合成聚乙烯的原料,其主要来源是石油裂解气,其中少量的乙炔杂质会严重毒化生产聚乙烯的催化剂,因此需要将其去除.对于乙炔选择加氢反应,传统工业上使用的是Pd基催化剂,尽管其乙炔转化率很高,但对乙烯的选择性很低.我们前期的研究发现,IB族金属(Au,Ag和Cu)与Pd形成的合金单原子催化剂可以有效地提高乙烯的选择性.作为与Pd同组的非贵金属,Ni催化剂在多种催化加氢反应中显示出优异活性,而在乙炔选择加氢反应中,Ni是否能够替代贵金属Pd尚无定论.本文系统地研究了IB金属对Ni/SiO2催化剂乙炔选择性加氢性能的影响.与Pd/SiO2催化剂不同,单金属Ni/SiO2催化剂在低温下不具有活性.将IB金属添加到Ni/SiO2催化剂中,可以显著提高其催化活性以及对乙烯的选择性.其中,AuNix/SiO2和CuNix/SiO2催化剂的催化活性随还原温度升高而提高,而AgNix/SiO2催化剂对预处理温度不敏感.通过调变IB/Ni原子比和还原温度优化了催化剂的催化性能,发现优化后的三种催化剂(CuNi0.125/SiO2、AgNi0.5/SiO2和AuNi0.5/SiO2)的活性和选择性随反应温度升高表现出相似的变化趋势.催化稳定性考察结果显示,CuNi0.125/SiO2催化剂表现出最高选择性和稳定性;尽管AuNi0.5/SiO2的初始活性最高,但是稳定性最低.采用XRD、TPR和微量吸附量热等表征手段对不同IB金属对Ni基催化剂性质的影响进行了系统考察.以Cu-Nix/SiO2催化剂为例,H2-TPR测试结果表明,Cu-Ni双金属纳米颗粒的形成使得还原温度低于相应的单金属催化剂,表明铜和镍之间存在明显的相互作用.此外,通过TPR获得的CuNix/SiO2催化剂上的氢气消耗量与理论耗氢量相吻合,表明在还原处理的过程中双金属催化剂中的CuO和NiO可以被完全还原.乙炔的微量吸附量热结果表明,在CuNi0.125/SiO2,AgNi0.5/SiO2,AuNi0.5/SiO2和Ni0.5/SiO2催化剂上的初始吸附热分别为187,196,304和103 kJ/mol,即它们的初始乙炔吸附强度顺序为AuNi0.5/SiO2>AgNi0.5/SiO2>CuNi0.125/SiO2>Ni0.5/SiO2.该结果与三者的初始催化活性顺序一致,表明IB金属的加入可以增强乙炔在催化剂表面的吸附,从而提高催化活性.  相似文献   

2.
SiO2负载的Au-Ni双金属催化剂在乙炔选择加氢反应中的应用   总被引:1,自引:0,他引:1  
负载型Au催化剂在乙炔选择加氢反应中表现出很高的乙烯选择性,但其转化率相对较低.通过添加第二种金属如Pd,Fe,Ag和Cu等,制备双金属催化剂是提高其在加氢反应中催化活性的一种非常有效的手段.其中Au-Pd双金属催化剂是最受关注的体系之一,Pd的加入可以非常显著地提高其催化乙炔选择加氢反应的活性.据文献报道,与Pd同一主族的Ni也具有较好的加氢活性.尽管与Pd相比,Ni很难与Au形成合金,但目前已有Au-Ni双金属催化剂在多种反应中表现出协同效应的报道,如水气变换、CO氧化以及芳香硝基化合物选择加氢等.因此,向Au催化剂中添加Ni也可能提高催化剂在乙炔选择加氢反应中的催化活性.因此,我们采用两步法制备了一系列SiO2负载的具有不同Ni:Au原子比的Au-Ni双金属催化剂,并将其用于乙炔选择加氢反应,发现Au-Ni双金属催化剂在该反应中表现出了显著的协同效应,其活性明显优于相应单金属催化剂的活性.尽管其乙烯选择性略低于单金属Au催化剂,但明显高于单金属Ni催化剂.通过调节还原温度和/或Ni:Au的比例,对催化剂的性能进行了优化.结果显示,当Ni:Au=0.5时,催化剂表现出最优的综合性能,即兼具较高的乙炔转化率和乙烯选择性.为了研究Au-Ni双金属催化剂中金属纳米粒子的结构、组成以及Au-Ni之间的相互作用,我们对催化剂进行了X射线衍射(XRD)、高分辨透射电镜(HRTEM)、能量散射谱(EDS)以及原位红外光谱(DRIFTS)表征.XRD和TEM结果显示,催化剂中的Au-Ni双金属纳米粒子都具有高分散和粒径均匀的特点.通过EDS分析,发现在Au-Ni双金属催化剂中的单个金属纳米粒子同时含有Au和Ni两种元素,尽管每个纳米粒子中Ni:Au的比例有差异.HRTEM结果发现,Au-Ni双金属纳米粒子的晶格间距介于Au(111)和Ni(111)的晶面间距之间,说明在Au-Ni双金属催化剂中有Au-Ni合金形成.原位DRIFTS结果显示,在Au-Ni双金属催化剂中,Au的存在促进了Ni的还原,说明Au与Ni之间存在紧密的相互作用.综上可见,Au和Ni在乙炔选择加氢反应中所表现出的协同效应主要归功于Au-Ni合金的形成,其中金属态Ni起主要的活性作用,而Au的存在则提高了催化剂的乙烯选择性.  相似文献   

3.
负载型Au催化剂在乙炔选择加氢反应中表现出很高的乙烯选择性,但其转化率相对较低.通过添加第二种金属如Pd,Fe,Ag和Cu等,制备双金属催化剂是提高其在加氢反应中催化活性的一种非常有效的手段.其中Au-Pd双金属催化剂是最受关注的体系之一,Pd的加入可以非常显著地提高其催化乙炔选择加氢反应的活性.据文献报道,与Pd同一主族的Ni也具有较好的加氢活性.尽管与Pd相比,Ni很难与Au形成合金,但目前已有Au-Ni双金属催化剂在多种反应中表现出协同效应的报道,如水气变换、CO氧化以及芳香硝基化合物选择加氢等.因此,向Au催化剂中添加Ni也可能提高催化剂在乙炔选择加氢反应中的催化活性.因此,我们采用两步法制备了一系列Si O2负载的具有不同Ni:Au原子比的Au-Ni双金属催化剂,并将其用于乙炔选择加氢反应,发现Au-Ni双金属催化剂在该反应中表现出了显著的协同效应,其活性明显优于相应单金属催化剂的活性.尽管其乙烯选择性略低于单金属Au催化剂,但明显高于单金属Ni催化剂.通过调节还原温度和/或Ni:Au的比例,对催化剂的性能进行了优化.结果显示,当Ni:Au=0.5时,催化剂表现出最优的综合性能,即兼具较高的乙炔转化率和乙烯选择性.为了研究Au-Ni双金属催化剂中金属纳米粒子的结构、组成以及Au-Ni之间的相互作用,我们对催化剂进行了X射线衍射(XRD)、高分辨透射电镜(HRTEM)、能量散射谱(EDS)以及原位红外光谱(DRIFTS)表征.XRD和TEM结果显示,催化剂中的Au-Ni双金属纳米粒子都具有高分散和粒径均匀的特点.通过EDS分析,发现在Au-Ni双金属催化剂中的单个金属纳米粒子同时含有Au和Ni两种元素,尽管每个纳米粒子中Ni:Au的比例有差异.HRTEM结果发现,Au-Ni双金属纳米粒子的晶格间距介于Au(111)和Ni(111)的晶面间距之间,说明在Au-Ni双金属催化剂中有Au-Ni合金形成.原位DRIFTS结果显示,在Au-Ni双金属催化剂中,Au的存在促进了Ni的还原,说明Au与Ni之间存在紧密的相互作用.综上可见,Au和Ni在乙炔选择加氢反应中所表现出的协同效应主要归功于Au-Ni合金的形成,其中金属态Ni起主要的活性作用,而Au的存在则提高了催化剂的乙烯选择性.  相似文献   

4.
利用程序升温还原(TPR)、X-射线衍射(XRD)、CO吸附-红外光谱(CO-IR)、电子顺磁共振(EPR)和微型催化反应评价等手段, 研究了负载Pd/γ-Al2O3, Pd/TiO2和Pd-Ag/TiO2催化剂的结构和乙炔选择性加氢催化性能. 结果表明, Pd/TiO2催化剂具有较Pd/γ-Al2O3催化剂更优良的乙炔选择性加氢催化性能, 这与Pd-TiO2之间的强相互作用密切相关. Pd-TiO2之间的强相互作用不仅使负载型钯金属催化剂具有较高的乙炔加氢催化选择性, 而且具有较高的乙炔加氢催化活性. Pd/TiO2催化剂中添加Ag 组分后, Pd金属可促进Ag+的还原并可能形成Pd-Ag合金, 催化剂的乙烯选择性虽有所增加, 但乙炔转化率和乙烯收率下降.  相似文献   

5.
采用等体积浸渍法制备了Ni/SiO_2及Ni与金属助剂M(M=Fe、Co、Cu、Zn及Ga)物质的量比为30的Ni基双金属催化剂(记作Ni_(30)M/SiO_2),利用H_2-TPR、XRD、H_2化学吸附、NH_3-TPD以及N_2物理吸附-脱附等手段对催化剂进行了结构表征,研究了不同助剂对催化剂结构与苯甲醚加氢脱氧性能影响。结果发现,金属助剂影响了催化剂前驱体中镍物种的还原性能,表明金属助剂及镍之间存在一定相互作用。Ni_(30)M/SiO_2中Ni-M双金属晶粒粒径和Ni/SiO_2中金属Ni晶粒粒径相近。由于表面张力较低的金属会在双金属晶粒表面富集,Ni_(30)M/SiO_2的H_2化学吸附量不同程度地低于Ni/SiO_2。另外,Ni_(30)M/SiO_2催化剂的酸量(尤其较弱酸中心酸量)高于Ni/SiO_2。在300℃、常压、苯甲醚质量空速1.0 h~(-1)及H_2与苯甲醚物质的量比为25∶1条件下考察了各催化剂苯甲醚的加氢脱氧性能。Ni_(30)M/SiO_2上苯甲醚转化率不同程度低于Ni/SiO_2,原因在于Ni_(30)M/SiO_2催化剂H_2化学吸附量较低。Ga及Zn改性催化剂上三苯(包括苯、甲苯及二甲苯)选择性分别为81.7%和76.8%,高于Ni/SiO_2(71.5%),且Ni_(30)Ga/SiO_2及Ni_(30)Zn/SiO_2上三苯收率(分别为65.0%及63.8%)高于或接近于Ni/SiO_2(63.7%)。Ni/SiO_2及Ni_(30)M/SiO_2催化剂中,Ni_(30)Zn/SiO_2具有较高甲基转移能力及较低C-C键氢解活性。从提高碳收率、降低耗氢量角度而言,Ni_(30)Zn/SiO_2具有较佳的加氢脱氧性能,与Ni和Zn之间作用及Zn亲氧性高于Ni有关。  相似文献   

6.
大量乙烯中少量乙炔的去除是化工生产中的重要过程之一,理想途径是将其选择加氢生成乙烯.负载型Pd催化剂因具有很高的乙炔转化率而被广泛用于该过程,但乙烯选择性很低,同时会使原料气中的乙烯被加氢,造成原料气的浪费.采用其它元素对Pd纳米粒子表面修饰,覆盖部分活性位,可以在一定程度上提高乙烯选择性,但是会大大降低Pd的利用率.因此,制备兼具高活性和高选择性且经济实用的催化剂,仍是这一过程亟待解决的主要问题之一.我们的前期工作中,将Pd与IB族金属(Au,Ag,Cu)分别结合制备得到了一系列含Pd的合金单原子催化剂(SAC),发现它们在大量乙烯存在条件下的乙炔选择加氢反应中表现出优异的催化性能.其中,Pd的用量仅为ppm级别,大大提高了Pd的利用率.作为IB族最为廉价的金属,Pd与Cu形成的合金SAC在提高Pd原子利用率的同时,能够进一步降低催化剂的经济成本.然而,当形成合金SAC时,Cu/Pd原子比例的极限值仍然不确定.本文通过固定Pd的担载量,采用简单的等体积共浸渍的方法,制备了一系列不同Cu/Pd原子比例的氧化硅负载的双金属催化剂.首先,我们采用程序升温还原(TPR)和X射线衍射(XRD)对催化剂的还原能力和双金属纳米粒子的尺寸进行了考察.进一步,采用X射线吸收光谱(XAS,包括EXAFS和XANES)对双金属催化剂中Pd的配位环境进行了分析.最后,结合它们在大量乙烯存在条件下的乙炔选择加氢反应中的催化性能,对形成合金SAC时Cu/Pd原子比例进行了讨论.TPR结果显示,Cu与Pd结合时会促进双金属纳米粒子的还原.XRD结果表明,随着Cu含量的降低,双金属纳米粒子的尺寸明显减小.XANES结果证实,当Pd与Cu结合时,Pd会带有部分负电荷,这也与Pd的电负性大于Cu相一致.通过对EXAFS拟合结果进行分析,我们发现当Cu/Pd的原子比例≥40/1时,Pd原子可以被Cu原子完全分隔开,形成含Pd的合金SAC,使其在大量乙烯存在条件下的乙炔选择加氢反应中表现出优异的催化性能.通过对还原温度的考察,我们发现还原温度由250 oC升高到400 oC时,对同一催化剂的催化性能影响不大;EXAFS拟合结果显示,对比分别经过250和400 oC还原后的催化剂,Pd的配位环境变化不明显,这可能是导致催化性能相似的主要原因.  相似文献   

7.
开发高活性的顺酐加氢制丁二酸酐和γ-丁内酯催化剂具有重要的工业意义.顺酐加氢多采用Cu基和Ni基催化剂,但一般Cu基和Ni基催化剂存在反应温度高(170–260℃)和稳定性差等缺点,很有必要开发高活性的顺酐加氢催化剂.我们以拟薄水铝石作为Al2O3载体的前驱体,采用浸渍法制备了一系列镍铝尖晶石型衍生的不同Ni含量的Ni/Al2O3催化剂,并研究了它们在顺酐加氢反应中的催化性能.还原前Ni/Al2O3催化剂的X射线衍射结果表明,催化剂含有NiAl2O4物种.氮吸附结果显示,不同Ni含量的催化剂均具有介孔结构.氢-程序升温还原研究发现,Ni/Al2O3催化剂经750℃还原2 h后,其表面上NiAl2O4物种能被高效还原.X射线粉末衍射结果表明,750℃还原的Ni/Al2O3催化剂中金属Ni颗粒尺寸随着Ni负载量升高而增大.利用一氧化碳-程序升温脱附对750℃还原的Ni/Al2O3催化剂进行研究,发现750℃还原的催化剂上金属Ni物种含量从高到低依次为:Ni(7.5%)/Al2O3>Ni(5%)/Al2O3>Ni(2.5%)/Al2O3.采用CO化学吸附获得的Ni(2.5%)/Al2O3,Ni(5%)/Al2O3和Ni(7.5%)/Al2O3催化剂上金属Ni颗粒尺度分别为8.0,12.8和15.7 nm.活性研究结果表明,750℃还原的Ni(5%)/Al2O3催化剂具有最高的催化活性,这可能是由于Ni(5%)/Al2O3催化剂具有较多的Ni活性位点和较合适的Ni颗粒粒度所致.进一步研究发现,在650–750℃还原温度下,Ni(5%)/Al2O3催化剂的还原度随着还原温度的升高而升高,Ni分散度随着还原温度的升高而降低.活性结果研究表明,700℃还原的Ni(5%)/Al2O3催化剂具有较多的Ni活性位点和较合适的Ni颗粒粒度,具有最高的加氢催化活性,其在120℃,H2压力为0.5 MPa和质量空速为2 h?1的反应条件下,能获得近100%的顺酐转化率和90%的丁二酸酐选择性,同时该催化剂具有优良的稳定性.以上结果表明,尖晶石型衍生的Ni/Al2O3催化剂是一个十分有应用前景的顺酐加氢催化剂.  相似文献   

8.
开发高活性的顺酐加氢制丁二酸酐和γ-丁内酯催化剂具有重要的工业意义.顺酐加氢多采用Cu基和Ni基催化剂,但一般Cu基和Ni基催化剂存在反应温度高(170–260°C)和稳定性差等缺点,很有必要开发高活性的顺酐加氢催化剂.我们以拟薄水铝石作为Al_2O_3载体的前驱体,采用浸渍法制备了一系列镍铝尖晶石型衍生的不同Ni含量的Ni/Al_2O_3催化剂,并研究了它们在顺酐加氢反应中的催化性能.还原前Ni/Al_2O_3催化剂的X射线衍射结果表明,催化剂含有NiAl_2O_4物种.氮吸附结果显示,不同Ni含量的催化剂均具有介孔结构.氢-程序升温还原研究发现,Ni/Al_2O_3催化剂经750°C还原2 h后,其表面上NiAl_2O_4物种能被高效还原.X射线粉末衍射结果表明,750°C还原的Ni/Al_2O_3催化剂中金属Ni颗粒尺寸随着Ni负载量升高而增大.利用一氧化碳-程序升温脱附对750°C还原的Ni/Al_2O_3催化剂进行研究,发现750°C还原的催化剂上金属Ni物种含量从高到低依次为:Ni(7.5%)/Al_2O_3Ni(5%)/Al_2O_3Ni(2.5%)/Al_2O_3.采用CO化学吸附获得的Ni(2.5%)/Al_2O_3,Ni(5%)/Al_2O_3和Ni(7.5%)/Al_2O_3催化剂上金属Ni颗粒尺度分别为8.0,12.8和15.7 nm.活性研究结果表明,750°C还原的Ni(5%)/Al_2O_3催化剂具有最高的催化活性,这可能是由于Ni(5%)/Al_2O_3催化剂具有较多的Ni活性位点和较合适的Ni颗粒粒度所致.进一步研究发现,在650–750°C还原温度下,Ni(5%)/Al_2O_3催化剂的还原度随着还原温度的升高而升高,Ni分散度随着还原温度的升高而降低.活性结果研究表明,700°C还原的Ni(5%)/Al_2O_3催化剂具有较多的Ni活性位点和较合适的Ni颗粒粒度,具有最高的加氢催化活性,其在120°C,H_2压力为0.5 MPa和质量空速为2 h~(-1)的反应条件下,能获得近100%的顺酐转化率和90%的丁二酸酐选择性,同时该催化剂具有优良的稳定性.以上结果表明,尖晶石型衍生的Ni/Al_2O_3催化剂是一个十分有应用前景的顺酐加氢催化剂.  相似文献   

9.
由可再生木质素基生物质油加氢脱氧制三苯(苯、甲苯及二甲苯)及燃油可减少对化石能源依赖、缓解环境问题,加氢脱氧催化剂的研究开发为众多学者密切关注.我们以低成本金属Ni为加氢脱氧活性组分,采用金属In对金属Ni催化剂进行改性,旨在增加以苯甲醚为模型反应物加氢脱氧中的三苯收率、降低金属Ni的C-C键氢解及甲烷化活性,提高反应过程中碳收率、降低耗氢量.采用等体积浸渍-程序升温还原法制备了Ni/SiO_2及Ni-In/SiO_2催化剂,研究了Ni/In比及Ni含量对In改性Ni/SiO_2催化剂结构和苯甲醚加氢脱氧性能的影响,利用H_2-TPR,H_2化学吸附,XRD,NH3-TPD,XPS,TEM及N2物理吸附-脱附等手段对催化剂及其前驱体进行了表征,采用石英管固定床反应器在300°C、常压、H_2/苯甲醚摩尔比25及苯甲醚重时空速0.4 h-1的反应条件下考察了催化剂苯甲醚加氢脱氧性能,分析了催化剂结构与性能之间的关系.H_2-TPR结果显示,金属In的加入抑制了催化剂前驱体中Ni物种的还原.XRD,H_2化学吸附,HAADF-STEM-EDS及XPS等结果表明,经450°C还原制备的Ni-In/SiO_2双金属催化剂中Ni和In接触紧密.In的加入明显降低了催化剂表面金属Ni的活性位数量;并且,Ni/In比越低Ni-In/SiO_2催化剂H_2化学吸附量越小.XPS结果还显示,Ni-In/SiO_2催化剂中存在金属In向Ni转移电子.上述结果说明,在Ni-In/SiO_2催化剂中金属Ni与In存在较强的相互作用.在苯甲醚加氢脱氧反应中,与Ni/SiO_2催化剂相比,Ni-In/SiO_2催化剂虽因表面Ni密度较低而具有较低苯甲醚转化率,但其苯环加氢、C-C键氢解及CO甲烷化活性较低,因而具有较高的三苯及环己烷选择性;并且,随Ni/In比的降低(即In含量的增加),Ni-In/SiO_2催化剂的加氢、氢解及甲烷化能力呈减弱趋势.随Ni质量含量提高,Ni-In/SiO_2双金属催化剂上苯甲醚转化率提高,但对三苯选择性及C-C键氢解能力影响不明显.经分析认为,与Ni/SiO_2相比,Ni-In/SiO_2催化剂较低的苯加氢及C-C键氢解活性与In对表面连续Ni位隔离作用及金属镍位电子云密度提高有关.在优化的反应条件下,Ni质量含量为40%、Ni/In比为40的Ni-In/SiO_2催化剂上三苯收率为60.4%,高于相同Ni质量含量Ni/SiO_2催化剂上三苯收率(51.6%).  相似文献   

10.
采用浸渍法和溶胶负载法制备了一系列Au-Pd双金属催化剂,用氮吸附法,X光粉末衍射(XRD)、程序升温还原(TPR),扫描电镜(SEM)和X射线光电子能谱(XPS)对催化剂进行了表征.以分子氧为氧化剂,在无任何其它溶剂存在的条件下,考察了催化剂制备方法、不同类型载体、Au/Pd原子比、浸渍顺序、活化温度、催化剂用量及反应时间等多种因素对甲苯选择氧化反应的影响.实验结果表明:对SiO_2载体,以共浸渍法制备的催化剂活性和选择性最好;TiO_2载体,以溶胶负载法制备的催化剂活性和选择性较好;Au Pd双金属催化剂比单金或者单钯催化剂具有更好的催化活性.其中Au Pd/SiO_2-I催化剂使甲苯转化率达到56.8%,苯甲酸苄酯的选择性为9 1.3%,TON值为3692.Au Pd/SiO_2-I催化剂中氧化态的钯和零价金更利于催化剂中的电子传递从而利于催化氧化反应的进行.  相似文献   

11.
化学选择性是评价催化剂性能最重要的参数之一,它直接决定了产物的经济价值及后续的分离成本.传统的负载型金属催化剂由于其金属粒径分布不均,且不同原子数组成的粒子通常具有特征产物选择性,从而限制化学选择性的提高;另一方面,对于金属多原子活性中心,反应物在催化剂表面可以存在多种吸附构型进而衍化为不同产物,产物可控性差.因此,获得金属尺寸均一,且具有原子分散的活性中心,即单原子催化剂,成为官能团多相催化转化高选择性的迫切需求.本课题组通过400 oC还原1%-Pd/ZnO得到PdZn金属间化合物,依据其规律排布的Pd-Zn-Pd单元获得Pd基单原子催化剂.该催化剂在乙烯化工中少量乙炔的加氢转化反应中获得令人欣喜的催化性能——兼具有乙炔的高转化率和乙烯的高选择性.结合微量吸附量热、理论计算等表征,Pd活性中心在PdZn金属间化合物中的特殊空间排布是其优异催化性能的根源,即乙炔以较强的σ键吸附在两个相邻的单Pd金属中心,易吸附活化加氢生成乙烯,而乙烯则吸附于单Pd金属中心,较弱的π键形式吸附有利于其脱附避免过渡加氢.基于前期研究,构筑具有均一单金属中心的负载型单原子催化剂是获得高选择性的另一有效方法,且较之于PdZn金属间化合物催化剂,该类单原子催化剂兼具有原子利用率最大化的优点.本文采用等体积浸渍法制备Pd/ZnO催化剂,通过降低Pd金属含量(1 wt%→0.1 wt%→0.01 wt%)并在较低的温度下(100 oC)还原(H2-TPR表明高温还原形成PdZn金属间化合物型合金)得到负载型单原子催化剂(Pd1/ZnO SAC).高分辨电镜结果表明,当Pd负载量由1%降至0.1%,金属纳米颗粒的粒径尺寸显著降低,而在0.01%-Pd/ZnO催化剂表面,Pd活性中心则以单原子状态分散于载体ZnO表面.X-射线吸收光谱及电子能谱表明,随着负载量的降低,Pd活性物种具有更高的正电性.该催化剂在乙炔选择性加氢反应中表现出更加优越的催化性能,具有与PdZn催化剂相当的高选择性,而更优的比活性.这归结于Pd1/ZnO单原子催化剂的Pdδ+单原子活性中心有助于其与乙炔的静电相互作用并吸附活化加氢生成乙烯,并促使乙烯以较弱的π键吸附,从而易于从催化剂表面脱附获得高选择性.  相似文献   

12.
用TEM,XRD,XPS和化学吸附方法表征了溶剂化金属原子浸渍法(SMAI)制备的Pd/γ-Al_2O_3,Pd/SiO_2和Pd/MgO催化剂以及由普通浸溃法(CI)制备的具有相同组成的相应催化剂,并对它们的加氢催化活性进行了比较。发现前者Pd粒度小,分布均匀,分散度和还原度高,而后者Pd粒度较大,分布不均,分散度和还原度都较低。因此前者在二丙酮醇,环十二碳三烯及苯的加氢反应中的催化活性都高于后者。  相似文献   

13.
采用程序升温还原法和次磷酸盐歧化法制备了Ni_2P/SiO_2催化剂,结合现代仪器分析表征技术,研究了制备方法对Ni_2P/SiO_2催化剂结构和萘加氢性能的影响。结果表明,两种方法均可制备出仅含Ni_2P活性相的Ni_2P/SiO_2催化剂,在反应温度340℃、氢气压力4 MPa、空速为20.8 h~(-1)下,程序升温还原法制备的Ni_2P/SiO_2催化剂表现出更高的萘加氢活性,这主要是因为程序还原法制备的Ni_2P/SiO_2催化剂中有更多Ni_2P物种生成,提供了较多的活性位点(CO吸附量21.6μmol/g);且催化剂表面弱酸位点多,有利于芳烃吸附。当选用程序升温还原法制备Ni_2P/SiO_2催化剂时,在保证生成纯相Ni_2P的前提下,较低的Ni/P比更有利于合成高加氢活性的Ni_2P/SiO_2催化剂。  相似文献   

14.
过氧化氢(H_2O_2)是一种绿色化工原料和环境友好氧化剂.目前,超过98%的H_2O_2是通过蒽醌法生产.蒽醌法主要包括2-乙基蒽醌氢化生成2-乙基氢蒽醌和2-乙基氢蒽醌氧化生成2-乙基蒽醌和H_2O_2的过程.其中,2-乙基蒽醌氢化是关键步骤.在氢化过程中,生成的2-乙基氢蒽醌和四氢-2-乙基氢蒽醌是目标产物,同时生成许多副产物.目前,Pd颗粒催化剂是广泛使用的催化剂,但是蒽醌氢化过程中,质量传递是主要的控制因素.与颗粒催化剂对比,整体式催化剂可以减弱整个反应的内外扩散,提高反应速率.很多研究结果显示,整体式催化剂的传质优于颗粒催化剂,可以提高催化效率.近期许多研究显示,双金属颗粒催化剂在很多氢化反应中体现出优异的催化性能.本工作制备了双金属整体式催化剂,考察了其在蒽醌氢化过程中的催化性能.首先,通过浸渍法制备了4种双金属整体式催化剂Pd-M/SiO_2/COR(M=Ni,Fe,Mn和Cu)以及Pd/SiO_2/COR和Ni/SiO_2/COR两种单金属整体式催化剂.催化活性结果显示,Ni/SiO_2/COR的H_2O_2产量低于Pd/SiO_2/COR,而且在700 ℃还原的Pd-Ni/SiO_2/COR整体式催化剂在Pd/M=2时取得了最高选择性(95.3%)和H_2O_2产量(7.5 g/L).然后,考察了金属负载量的影响.结果显示,在金属负载量低于0.4%时,随着金属负载量增加,选择性和H_2O_2产量增加,在金属负载量高于0.4%时,随着金属负载量增加,选择性和H_2O_2产量降低.TEM结果表明,添加第二种金属后,双金属整体式催化剂颗粒尺寸变小,分布更均匀.EDS结果显示,双金属形成了合金.H_2-TPR结果显示,随着Pd/M比率增加,还原温度降低,说明Pd有助于第二种金属氧化物的还原.这可能是由于Pd表面的氢溢流到第二种金属(Ni,Fe,Mn和Cu)表面.此外,文献结果表明,合金的形成能够抑制PdH的形成.本工作表明添加第二种金属(Ni,Fe,Mn和Cu)后,PdH的峰强度减弱或者峰消失,也说明形成了合金.XPS结果显示,添加第二种金属后,在336.3±0.1和341.4±0.1 eV出现了新的Pd 3d_(5/2)和Pd 3d_(3/2)峰,说明形成了合金.H_2-O_2滴定结果表明,Pd-Ni/SiO_2/COR的Pd分散度和Pd比表面积都高于其他双金属催化剂,说明第二种金属Ni更有利于促进Pd的分散,减弱颗粒集聚,揭示了Pd和Ni之间强烈的相互作用.DFT计算结果显示,Pd_3M_1(M=Ni,Fe,Mn和Cu)双金属整体式催化剂和2-乙基蒽醌之间的结合能低于Pd/SiO_2/COR和2-乙基蒽醌之间的结合能,但是Pd_3M_1(M=Ni,Fe和Mn)双金属催化剂和2-乙基氢蒽醌之间的结合能减小得很少,这可能是由于2-乙基蒽醌的C=O和第二种金属之间具有强烈相互作用的缘故.Pd_3Cu_1双金属催化剂和2-乙基氢蒽醌之间的结合能减小很多,主要是由于Pd_3Cu_1表面不利于2-乙基氢蒽醌的吸附.因此,Pd-Ni/SiO_2/COR比Pd/SiO_2/COR,Ni/SiO_2/COR和其他的双金属整体式催化剂具有更高的选择性和H_2O_2产量,主要是由于合金的形成以及2-乙基氢蒽醌的C=O双键和2-乙基氢蒽醌强烈的相互作用.  相似文献   

15.
用微型反应器评价体系结合程序升温还原CO、化学吸附、BET比表面积测试和高分辨率透射电子显微镜等多种表征方法研究了负载型Pd/SBA-15催化剂的长链正构双烯选择性加氢的催化性能.结果表明,与Pd/-γAl2O3工业催化剂相比,Pd/SBA-15催化剂双烯选择性加氢的催化性能更优良,且Pd/SBA-15催化剂双烯选择性加氢催化性能与Pd负载量密切相关.随Pd负载量增加,Pd/SBA-15催化剂的金属分散度和长链正构双烯加氢选择性急剧下降.  相似文献   

16.
大量乙烯中少量乙炔的去除是化工生产中的重要过程之一,理想途径是将其选择加氢生成乙烯.负载型Pd催化剂因具有很高的乙炔转化率而被广泛用于该过程,但乙烯选择性很低,同时会使原料气中的乙烯被加氢,造成原料气的浪费.采用其它元素对Pd纳米粒子表面修饰,覆盖部分活性位,可以在一定程度上提高乙烯选择性,但是会大大降低Pd的利用率.因此,制备兼具高活性和高选择性且经济实用的催化剂,仍是这一过程亟待解决的主要问题之一.我们的前期工作中,将Pd与IB族金属(Au,Ag,Cu)分别结合制备得到了一系列含Pd的合金单原子催化剂(SAC),发现它们在大量乙烯存在条件下的乙炔选择加氢反应中表现出优异的催化性能.其中,Pd的用量仅为ppm级别,大大提高了Pd的利用率.作为IB族最为廉价的金属,Pd与Cu形成的合金SAC在提高Pd原子利用率的同时,能够进一步降低催化剂的经济成本.然而,当形成合金SAC时,Cu/Pd原子比例的极限值仍然不确定.本文通过固定Pd的担载量,采用简单的等体积共浸渍的方法,制备了一系列不同Cu/Pd原子比例的氧化硅负载的双金属催化剂.首先,我们采用程序升温还原(TPR)和X射线衍射(XRD)对催化剂的还原能力和双金属纳米粒子的尺寸进行了考察.进一步,采用X射线吸收光谱(XAS,包括EXAFS和XANES)对双金属催化剂中Pd的配位环境进行了分析.最后,结合它们在大量乙烯存在条件下的乙炔选择加氢反应中的催化性能,对形成合金SAC时Cu/Pd原子比例进行了讨论.TPR结果显示,Cu与Pd结合时会促进双金属纳米粒子的还原.XRD结果表明,随着Cu含量的降低,双金属纳米粒子的尺寸明显减小.XANES结果证实,当Pd与Cu结合时,Pd会带有部分负电荷,这也与Pd的电负性大于Cu相一致.通过对EXAFS拟合结果进行分析,我们发现当Cu/Pd的原子比例≥40/1时,Pd原子可以被Cu原子完全分隔开,形成含Pd的合金SAC,使其在大量乙烯存在条件下的乙炔选择加氢反应中表现出优异的催化性能.通过对还原温度的考察,我们发现还原温度由250 oC升高到400 oC时,对同一催化剂的催化性能影响不大;EXAFS拟合结果显示,对比分别经过250和400 oC还原后的催化剂,Pd的配位环境变化不明显,这可能是导致催化性能相似的主要原因.  相似文献   

17.
以Fe(CO)5为前体采用超声法合成纳米Fe胶体粒子,通过Fe胶体与PdCl2发生金属置换反应制备出活性炭负载Pd-Fe双金属催化剂.研究了表面活性剂聚乙烯吡咯烷酮对制备负载型催化剂的影响.采用XRD、H2程序升温还原(H2-TPR)、TEM、EDX等表征手段对催化剂进行表征,以苯乙炔加氢反应为探针反应考察了Fe含量对于催化剂催化性能的影响.结果表明加氢催化活性较差的金属组分Fe在合适的比例下可以促进Pd基催化剂的加氢催化活性和选择性,然而,过多的Fe也会降低其催化活性.  相似文献   

18.
为了提高苯乙炔加氢反应中的苯乙烯选择性,本文采用"胶体-等体积浸渍"两步法制备了Pd-Cu/γ-Al2O3双金属催化剂.利用高分辨率透射电镜(HRTEM)、X射线光电子能谱(XPS)、CO脉冲化学吸附、N2物理吸附、电感耦合等离子体原子发射光谱(ICP-AES)等技术表征了Pd-Cu/γ-Al2O3的结构性质,考察了Cu/Pd摩尔比、Pd负载量以及金属引入顺序对Pd-Cu/γ-Al2O3催化苯乙炔选择性加氢性能的影响.结果表明,与Pd/γ-Al2O3单金属催化剂相比,Pd-Cu/γ-Al2O3的苯乙烯选择性大幅度提高,尤其是当Pd负载量为0.3%(w),且Cu/Pd摩尔比为0.6时,Pd-Cu/γ-Al2O3表现出优异的加氢选择性;在0.1 MPa和40°C下,当苯乙炔转化率为90%时,双金属催化剂的苯乙烯选择性可达95%;当转化率达到99%以上时,苯乙烯选择性仍保持在82%左右.分析表明,Pd-Cu/γ-Al2O3中形成了Pd-Cu合金,但是两种金属间不存在电子转移,Cu对Pd的几何效应才是导致Pd-Cu/γ-Al2O3苯乙烯选择性增加的主要原因.  相似文献   

19.
分别以MgO,-γAl2O3和镁铝水滑石(HT)为载体,PdCl2为活性金属前驱体,采用等体积浸渍法制得Pd质量分数为0.5%的Pd/MgO,Pd/Al2O3和Pd/HT催化剂,考察了它们对苯酚加氢制环己酮的催化活性和选择性.采用X射线衍射、N2吸附、H2程序升温脱附、CO2程序升温脱附和X射线光电子能谱等手段对这些催化剂进行了表征,并与催化活性和选择性关联.实验结果表明,载体的平均孔径越大,催化剂的表面Pd含量越高,催化剂表面的碱中心越多,则越有利于氢和苯酚在催化剂表面的吸附,从而提高苯酚的转化率和环己酮选择性.在反应温度为130℃,H2与苯酚摩尔比为4,LHSV为0.19 h-1的条件下,0.5%Pd/HT催化剂上苯酚的转化率可达90%,环己酮的选择性可达97%以上.  相似文献   

20.
在Y分子筛上浸渍0.1 wt% Pd和0.1–0.5 wt% Ni,用X射线衍射表征了该催化剂的结晶度,用透射电镜测得平均金属粒径.催化剂中Pd和Ni的化学态用X射线光电子能谱测定,其酸性则用氨-程序升温脱附进行了表征,发现一些酸位被Ni2+离子交换.采用程序升温还原表征了HY分子筛负载的Pd, Ni和Pd-Ni催化剂的还原性能.正癸烷加氢异构化反应在200–450 oC和1 atm条件下进行.结果发现,当0.1 wt% Pd/HY中Ni添加量增至0.3 wt%时,正癸烷转化率和异构化选择性增加.单支链和双支链异构体选择性的增加表明该反应遵循质子化环丙烷中间体机理. Ni添加量超过阈值导致活性和异构化选择性急剧下降.综上可见,双金属催化剂更有利于选择性生成双支链异构体,其辛烷值更高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号