首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 203 毫秒
1.
The residual symmetry relating to the truncated Painlev′e expansion of the Kadomtsev–Petviashvili(KP) equation is nonlocal, which is localized in this paper by introducing multiple new dependent variables. By using the standard Lie group approach, new symmetry reduction solutions for the KP equation are obtained based on the general form of Lie point symmetry for the prolonged system. In this way, the interaction solutions between solitons and background waves are obtained, which are hard to find by other traditional methods.  相似文献   

2.
In this paper,the truncated Painlev′e analysis,nonlocal symmetry,Bcklund transformation of the(2+1)-dimensional modified Bogoyavlenskii–Schiff equation are presented.Then the nonlocal symmetry is localized to the corresponding nonlocal group by the prolonged system.In addition,the(2+1)-dimensional modified Bogoyavlenskii–Schiff is proved consistent Riccati expansion(CRE) solvable.As a result,the soliton–cnoidal wave interaction solutions of the equation are explicitly given,which are difficult to find by other traditional methods.Moreover figures are given out to show the properties of the explicit analytic interaction solutions.  相似文献   

3.
The nonlocal symmetries are derived for the Korteweg–de Vries–negative-order Korteweg–de Vries equation from the Painlevétruncation method.The nonlocal symmetries are localized to the classical Lie point symmetries for the enlarged system by introducing new dependent variables.The corresponding similarity reduction equations are obtained with different constant selections.Many explicit solutions for the integrable equation can be presented from the similarity reduction.  相似文献   

4.
The nonlocal symmetry for the potential Kadomtsev-Petviashvili(pKP)equation is derived by the truncated Painleve analysis.The nonlocal symmetry is localized to the Lie point symmetry by introducing the auxiliary dependent variable.Thanks to localization process,the finite symmetry transformations related with the nonlocal symmetry are obtained by solving the prolonged systems.The inelastic interactions among the multiple-front waves of the pKP equation are generated from the finite symmetry transformations.Based on the consistent tanh expansion method,a nonauto-B(a|¨)cklund transformation(BT)theorem of the pKP equation is constructed.We can get many new types of interaction solutions because of the existence of an arbitrary function in the nonauto-BT theorem.Some special interaction solutions are investigated both in analytical and graphical ways.  相似文献   

5.
The nonlocal symmetry of the Sawada–Kotera(SK) equation is constructed with the known Lax pair. By introducing suitable and simple auxiliary variables, the nonlocal symmetry is localized and the finite transformation and some new solutions are obtained further. On the other hand, the group invariant solutions of the SK equation are constructed with the classic Lie group method.In particular, by a Galileo transformation some analytical soliton-cnoidal interaction solutions of a asymptotically integrable equation are discussed in graphical ways.  相似文献   

6.
This paper is concerned with the fifth-order modified Korteweg-de Vries(fmKdV) equation. It is proved that the fmKdV equation is consistent Riccati expansion(CRE) solvable. Three special form of soliton-cnoidal wave interaction solutions are discussed analytically and shown graphically. Furthermore, based on the consistent tanh expansion(CTE) method, the nonlocal symmetry related to the consistent tanh expansion(CTE) is investigated, we also give the relationship between this kind of nonlocal symmetry and the residual symmetry which can be obtained with the truncated Painlev′e method. We further study the spectral function symmetry and derive the Lax pair of the fmKdV equation. The residual symmetry can be localized to the Lie point symmetry of an enlarged system and the corresponding finite transformation group is computed.  相似文献   

7.
The nonlocal symmetries for the higher-order KdV equation are obtained with the truncated Painlev′e method. The nonlocal symmetries can be localized to the Lie point symmetries by introducing suitable prolonged systems.The finite symmetry transformations and similarity reductions for the prolonged systems are computed. Moreover, the consistent tanh expansion(CTE) method is applied to the higher-order KdV equation. These methods lead to some novel exact solutions of the higher-order KdV system.  相似文献   

8.
Whitham–Broer–Kaup(WBK) equations in the shallow water small-amplitude regime is hereby under investigation. Nonlocal symmetry and Bcklund transformation are presented via the truncated Painlevé expansion.This residual symmetry is localised to Lie point symmetry by the properly enlarged system. The finite symmetry transformation of the prolonged system is computed. Based on the CTE method, WBK equations are linearized and new analytic interaction solutions between solitary waves and cnoidal waves are given with the aid of solutions for the linear equation.  相似文献   

9.
刘萍  曾葆青  杨建荣  任博 《中国物理 B》2015,24(1):10202-010202
The residual symmetries of the Ablowitz–Kaup–Newell–Segur(AKNS)equations are obtained by the truncated Painleve′analysis.The residual symmetries for the AKNS equations are proved to be nonlocal and the nonlocal residual symmetries are extended to the local Lie point symmetries of a prolonged AKNS system.The local Lie point symmetries of the prolonged AKNS equations are composed of the residual symmetries and the standard Lie point symmetries,which suggests that the residual symmetry method is a useful complement to the classical Lie group theory.The calculation on the symmetries shows that the enlarged equations are invariant under the scaling transformations,the space–time translations,and the shift translations.Three types of similarity solutions and the reduction equations are demonstrated.Furthermore,several types of exact solutions for the AKNS equations are obtained with the help of the symmetry method and the Bcklund transformations between the AKNS equations and the Schwarzian AKNS equation.  相似文献   

10.
The residual symmetry of the generalized Kaup-Kupershmidt(gKK) equation is obtained from the truncated Painlevé expansion and localized to a Lie point symmetry in a prolonged system. New symmetry reduction solutions of the prolonged system are given by using the standard Lie symmetry method. Furthermore, the g KK equation is proved to integrable in the sense of owning consistent Riccati expansion and some new B¨acklund transformations are given based on this property, from which interaction solutions between soliton and periodic waves are given.  相似文献   

11.
A consistent tanh expansion (CTE) method is used to study the modified Boussinesq equation. It is proved that the modified Boussinesq equation is CTE solvable. The soliton-cnoidal periodic wave is explicitly given by a nonanto-BT theorem. Furthermore, the nonlocal symmetry for the modified Boussinesq equation is obtained by the Painlevé analysis. The nonlocal symmetry is localized to the Lie point symmetry by introducing one auxiliary dependent variable. The finite symmetry transformation related with the nonlocal symemtry is obtained by solving the initial value problem of the prolonged systems. Thanks to the localization process, many interaction solutions among solitons and other complicated waves are computed through similarity reductions. Some special concrete soliton-cnoidal wave interaction behaviors are studied both in analytical and graphical ways.  相似文献   

12.
A generalized Kadomtsev-Petviashvili equation is studied by nonlocal symmetry method and consistent Riccati expansion (CRE) method in this paper. Applying the truncated Painlevé analysis to the generalized Kadomtsev-Petviashvili equation, some Bäcklund transformations (BTs) including auto-BT and non-auto-BT are obtained. The auto-BT leads to a nonlocal symmetry which corresponds to the residual of the truncated Painlevé expansion. Then the nonlocal symmetry is localized to the corresponding nonlocal group by introducing two new variables. Further, by applying the Lie point symmetry method to the prolonged system, a new type of finite symmetry transformation is derived. In addition, the generalized Kadomtsev-Petviashvili equation is proved consistent Riccati expansion (CRE) solvable. As a result, the soliton-cnoidal wave interaction solutions of the equation are explicitly given, which are difficult to be found by other traditional methods. Moreover, figures are given out to show the properties of the explicit analytic interaction solutions.  相似文献   

13.
The bosonic supersymmetric modified KdV (BSmKdV) system is obtained by the bosonization approach. The nonlocal symmetry for the BSmKdV equation is obtained by the truncated Painlevé method. By introducing multiple new fields, the finite symmetry transformation for the BSmKdV equation is derived by applying Lie’s first principle to the prolonged systems. The similarity reductions related to the nonlocal symmetry are studied. The interaction solutions among the solitons and other complicated waves, including Painlevé II waves and periodic cnoidal waves, are presented through the reduction theorems. The concrete soliton-cnoidal interaction solutions are illustrated in detail by using the mapping and deformation method.  相似文献   

14.
This paper studies the analytical and semi-analytic solutions of the generalized Calogero–Bogoyavlenskii–Schiff(CBS) equation. This model describes the(2 + 1)–dimensional interaction between Riemann-wave propagation along the y-axis and the x-axis wave. The extended simplest equation(ESE) method is applied to the model, and a variety of novel solitarywave solutions is given. These solitary-wave solutions prove the dynamic behavior of soliton waves in plasma. The accuracy of the obtained solution is verified using a variational iteration(VI) semi-analytical scheme. The analysis and the match between the constructed analytical solution and the semi-analytical solution are sketched using various diagrams to show the accuracy of the solution we obtained. The adopted scheme's performance shows the effectiveness of the method and its ability to be applied to various nonlinear evolution equations.  相似文献   

15.
张全举  屈长征 《中国物理》2002,11(3):207-212
We study a third-order nonlinear evolution equation, which can be transformed to the modified KdV equation, using the Lie symmetry method. The Lie point symmetries and the one-dimensional optimal system of the symmetry algebras are determined. Those symmetries are some types of nonlocal symmetries or hidden symmetries of the modified KdV equation. The group-invariant solutions, particularly the travelling wave and spiral wave solutions, are discussed in detail, and a type of spiral wave solution which is smooth in the origin is obtained.  相似文献   

16.
From a two-vortex interaction model in atmospheric and oceanic systems, a nonlocal counterpart with shifted parity and delayed time reversal is derived by a simple AB reduction. To obtain some approximate analytic solutions of this nonlocal system, the multi-scale expansion method is applied to get an AB-Burgers system. Various exact solutions of the AB-Burgers equation, including elliptic periodic waves, kink waves and solitary waves, are obtained and shown graphically.To show the applications of these solutions in describing correlated events, a simple approximate solution for the two-vortex interaction model is given to show two correlated dipole blocking events at two different places. Furthermore, symmetry reduction solutions of the nonlocal AB-Burgers equation are also given by using the standard Lie symmetry method.  相似文献   

17.
In this paper, nonlocal residual symmetry of a generalized (2+1)-dimensional Korteweg–de Vries equation is derived with the aid of truncated Painlevé expansion. Three kinds of non-auto and auto Bäcklund transformations are established. The nonlocal symmetry is localized to a Lie point symmetry of a prolonged system by introducing auxiliary dependent variables. The linear superposed multiple residual symmetries are presented, which give rise to the nth Bäcklund transformation. The consistent Riccati expansion method is employed to derive a Bäcklund transformation. Furthermore, the soliton solutions, fusion-type N-solitary wave solutions and soliton–cnoidal wave solutions are gained through Bäcklund transformations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号