首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
目前所应用的SERS检测技术中,绝大部分都是贵金属材料,虽然贵金属材料都具有很强的拉曼增强效果,但是对激发光源却有很强的依赖,具有较大的局限性。以单层二维有序的聚苯乙烯胶体球为模板支撑,采用共溅射的方法将一种贵金属Ag与半导体FeS成功复合到一起并具有SERS活性的Ag/FeS复合材料。经检测发现其可以作为SERS基底,拓展了SERS基底材料的检测范围,增强了待检测探针分子亚甲基蓝(MB)的拉曼信号强度,在拉曼检测中有望得到广泛的应用。  相似文献   

2.
纳米酶是一类既有纳米材料的独特性能,又有催化功能的模拟酶,而表面增强拉曼散射(SERS)是由于一些分子吸附在粗糙金属纳米粒子或其他具有增强性能的纳米材料表面引起的拉曼信号被极大增强的现象,二者有一定的共性。除了贵金属、双金属纳米酶SERS基底的SERS增强来源于电磁场增强机制以外,SERS纳米酶复合材料基底的SERS增强机制一般为电磁场增强与化学增强共同起到作用。由于纳米酶是以纳米材料为基础的催化材料,而SERS基底材料也依赖于纳米材料,纳米酶SERS基底材料的构筑需要协同材料的类酶催化和SERS两个方面的活性。然而SERS活性基底材料的引入有可能会减少催化剂表面催化中心位点,降低催化效率,还会由于被催化分子在催化活性材料与SERS活性材料上的吸附性能不同造成SERS检测信号不能真实反映催化反应的真实进程,很大程度上限制了SERS技术对于催化监测的应用。因此对于纳米酶SERS基底来说,其有效的设计构筑来协同复合材料的催化与SERS活性对于纳米酶催化体系研究具有重要的意义。纳米酶SERS基底材料对于SERS技术在环境监测、食品安全、生物医学等领域应用具有重要的意义。基于特异性分子或者离子对于纳米酶催化反应的刺激响应,可以间接检测一些无拉曼散射截面的小分子,重金属离子和生物分子等,而这些分子本身是无法通过与基底的作用而直接被检测出来,对于这些分子的检测助于推进表面增强拉曼技术的普适化应用。纳米酶SERS基质材料的研究在理论和实际应用中具有重要价值,在催化机理、监测以及超敏生物传感领域具有广阔的前景。  相似文献   

3.
近年来,随着纳米技术的快速发展,表面增强拉曼散射(SERS)技术已广泛应用于物理化学、材料科学、表面科学以及生物科学等领域。基于氧化锌/金属复合SERS基底,因其具有高拉曼增强性能及优异的循环利用性能,正逐渐成为SERS技术的研究热点之一。本文综述了氧化锌复合SERS基底的机制、制备、调控和应用的研究进展,并在基础上分析了相关研究趋势,从而为高性能可循环利用SERS基底的开发与增强机制的研究提供重要参考。  相似文献   

4.
表面增强拉曼散射(surface-enhanced Raman scattering, SERS)在分析检测领域中具有重要地位,然而随着其不断发展,贵金属SERS基底在实际应用中受到限制.基于C, Ti, Zn, Cu, Mo, W等非贵金属纳米材料的SERS基底相比于贵金属基底具有更优异的经济性、稳定性、选择性以及生物相容性等,逐渐被广泛研究和应用.并且由于其化学增强占主导的特性,非贵金属基底为SERS化学增强机理的研究提供了理想的平台.因此,本文对近年来非贵金属SERS基底的发展进行了综述,讨论了不同材料的增强机理及SERS性能,并探讨了其未来的研究与发展方向.  相似文献   

5.
基于局域表面等离基元共振的原理,表面增强拉曼光谱(SERS)技术因其具有灵敏度高、使用方便、能提供近场增强的优点,广泛用于催化、光谱电化学、传感等领域[1-2]。表面增强拉曼基底是SERS的核心,硅片、玻璃片是最常用的用于制备SERS基底的衬底材料,然而他们的刚性特征限制了其应用范围。我们提出了一种简单的制备表面增强拉曼散射胶带的方法,利用胶带的粘性特征直接将沉积在刚性硅片表面的纳米结构转移至胶带表面。需要用时直接将胶带撕下来贴在需要检测的位置上,这种表面增强拉曼散射胶带可灵活方便用于固体、液体的原位检测和研究。  相似文献   

6.
侯翔宇  邱腾 《中国光学》2021,(1):170-181
近年来,一系列新型低维光电材料相继涌现,展现出优异的性能.这些光电材料与表面增强拉曼散射(SERS)技术相结合,显示出巨大的应用潜力,有望成为高灵敏SERS活性基底.缺陷与界面调控是低维光电材料SERS应用的重要策略,本文将重点介绍新型低维光电材料缺陷与界面增强拉曼散射的种类和增强机理.通过对缺陷与界面增强拉曼散射的应...  相似文献   

7.
表面增强拉曼散射(SERS)技术具有高灵敏度、高分辨率、无损检测及不需要预处理等优点,已成为一种可以实现定性定量分子检测的有力工具,使目标分析物信号放大的痕量检测技术,甚至能够在分子水平上提供丰富的结构信息。虽然SERS增强机理一直存在争议,但目前被广泛接受的增强机理包括物理增强(电磁场增强)和化学增强(主要为电荷转移的贡献)。随着近年来金属、非金属等诸多材料应用于SERS领域,诸多学者对于影响SERS基底的增强因素产生广泛兴趣,对于SERS增强机理的研究具有重要意义。综述中主要从SERS电磁增强机理、化学增强机理及两者的协同机理三个方面对SERS增强机理进行阐述,分析哪些因素影响基底增强效应,为SERS增强机理的分析提供一些参考。同时提出不同基底结构在增强机理分析过程中面临的问题:(1)在电磁增强机理中,单一贵金属基底因其“热点”分布不均匀、不可控因素导致SERS灵敏度和重复性差等因素,对SERS电磁增强机理影响效果较大;(2)在化学增强机理中,单一半导体材料由于价格实惠、材料性能较稳定、表面易于改性等优点被广泛应用于SERS基底、由于增强能力较低等因素、对SERS化学增强效果不明显...  相似文献   

8.
随着SERS技术的迅猛发展以及科研人员的不断探索,我们已经发现了很多半导体材料都具有较好的SERS活性。为了进一步探讨金属-半导体体系的电荷转移过程并扩展半导体材料在SERS领域的应用,本研究小组制备了具有不同结构的贵金属Ag-半导体Cu_2S复合基底,并在吸附探针分子后对基底的SERS表现进行了分析。这种方法通过控制基底中不同成分的组成,实现对SPR的调控,该方法不仅显著提高了被检测探针分子的信号强度,还克服了长久以来基底对于激发光波长依赖的特性,可以实现多种激发波长下的拉曼增强,有望广泛应用于拉曼分析检测中。  相似文献   

9.
表面增强拉曼散射(SERS)技术克服了拉曼光谱灵敏度低的缺点,可以获得常规拉曼光谱不易得到的分子结构信息,成为分子甚至单一分子痕量检测的一个重要手段,在生命科学、分析化学等领域得到了广泛的应用。SERS基底是SERS检测中的核心部件,只有少量特殊处理的贵金属才具有较强SERS效应,同时这些传统SERS基底一般都是一次性使用,这给实际使用造成资源的浪费。在简要介绍SERS光谱发展的基础上,重点介绍了近期在可循环SERS基底的制备和应用作一述评,并对可循环SERS基底的研究和发展做了展望。  相似文献   

10.
表面增强拉曼散射(SERS)是公认的超灵敏的光谱工具.和传统的优化SERS基底材料或构筑完美的结构策略相比,我们提出了一种极其简单和灵敏的方法,该方法被命名为状态转变增强拉曼光谱(STERS).这种STERS检测方法可广泛的应用于毒品安全检测、食品安全和环境保护等方面.如果我们把这种方法和便携式拉曼光谱仪结合,这种应用...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号