首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
近年来,利用太阳光光解水制氢被认为是解决当前能源短缺和环境污染问题的重要途径之一.众所周知,助催化剂可以有效的降低光催化产氢反应的活化能,提供产氢反应的活性位点,有效的促进催化剂中光生载流子的传输与分离,从而提高光催化剂产氢体系的反应活性和稳定性.然而,鉴于贵金属助催化剂(Pt, Au和Pd等)储量低、成本高,极大地制约了其应用.因而,开发出适用于光催化水分解制氢的非贵金属助催化剂尤为重要.石墨相氮化碳(g-C_3N_4)因其具有热稳定性、化学稳定性高以及制备成本低廉等优点,成为光催化领域研究的热点.然而,由于g-C_3N_4的禁带宽度(Eg=2.7 eV)较宽,致使其对可见光的响应能力较弱,并且在光催化反应过程中其光生电子-空穴对易复合,从而导致其光催化产氢活性较低.因此,如何开发出含非贵金属助催化剂的g-C_3N_4高效、稳定的太阳光催化分解水制氢体系引起了人们极大的关注.本文通过水热法-高温氨化法首次将非贵金属Ni_3N作为助催化剂来修饰g-C_3N_4,增强其可见光光催化性能(l420 nm).采用XRD、SEM、EDS、Mapping、UV-Vis、XPS和TEM等手段对Ni_3N/g-C_3N_4光催化体系进行了表征.结果表明, Ni_3N纳米颗粒成功的负载到g-C_3N_4表面且没有改变g-C_3N_4的层状结构.此外,采用荧光光谱分析(PL)、阻抗测试(EIS)和光电流谱进行表征,结果显示, Ni_3N纳米颗粒可有效促进催化剂中光生载流子的传输与分离,抑制电子-空穴对的复合.同时,将功率为300 W且装有紫外滤光片(λ420 nm)的氙灯作为可见光光源进行光催化产氢实验结果表明,引入了一定量的Ni_3N可以极大提高g-C_3N_4的光催化活性,其中, Ni_3N/g-C_3N_4#3的产氢量为~305.4μmol·h-1·g-1,大约是单体g-C_3N_4的3倍.此外,在450nm单色光照射下, Ni_3N/g-C_3N_4光催化产氢体系的量子效率能达到~0.45%,表明Ni_3N/g-C_3N_4具有将入射电子转化为氢气的能力.循环产氢实验表明, Ni_3N/g-C_3N_4在光催化产氢过程中有着较好的产氢活性和稳定性.最后,阐述了Ni_3N/g-C_3N_4体系的光催化产氢反应机理.本文采用的原料价格低廉,性能优异,制备简单,所制材料在光催化制氢领域展现出重要前景.  相似文献   

2.
光催化分解水制氢是应对能源危机和环境污染问题的途径之一,也是实现太阳能转化和储存的有效方法.其中,应用层面的一个关键制约因素是高效光催化剂的开发和制氢反应体系的构建,理论层面的一个关键科学问题是光生电子-空穴的高效分离及光生电子定向迁移,这两个层面的问题构成当前光催化分解水制氢研究的重大挑战.因此,稳定、高效催化剂的制备成为光催化领域重要的研究目标.类石墨烯氮化碳(g-C_3N_4)的结构与石墨相似,其层与层之间的范德华力使其具有良好的热稳定性和化学稳定性.g-C_3N_4是一种聚合物非金属半导体,由于具有与碳材料相似的层状堆积结构和sp~2杂化的π共轭电子能带结构,因此被认为是最有可能代替碳材料用于光催化分解水制氢的新型光催化材料.g-C_3N_4的室温禁带宽度为2.7eV左右,其价带和导带的位置完全覆盖了水的氧化-还原电位,因此理论上g-C_3N_4不仅能够氧化水为氧气,而且能够将水还原产氢,从而表现出优良的光电特性,成为新型太阳能转换材料.然而, g-C_3N_4在展示了良好研究前景的同时也存在一些缺陷,如比表面积较小及稳定性差等,这制约了g-C_3N_4在光催化领域的应用.为此,通过各种化学修饰对g-C_3N_4进行改性以提高其光催化活性和稳定性成为一个重要的研究方向.本文采用高温煅烧方法成功制备了Zn-Ni-P@g-C_3N_4催化剂.将一定量的g-C_3N_4、乙酸镍、乙酸锌和次亚磷酸钠均匀混合在一起并研磨成粉末,然后以3 oC/min的速率升温至300oC并在此温度下保持2h,自然冷却至室温后即得到Zn-Ni-P@g-C_3N_4催化剂,整个制备过程在氮气环境中进行.研究表明,在Zn与Ni摩尔比为1:3的Zn-Ni-P@g-C_3N_4催化剂上,当反应体系pH=10,在420nm光照下反应5h产氢量可达531.2μmol,是纯g-C_3N_4上的54.7倍.20h循环实验表明催化剂具有较好的光催化稳定性.对催化剂进行了XRD、TEM、SEM、XPS、N_2吸附、UV-vis DRS、瞬态光电流、FT-IR、瞬态荧光和Mott-Schottk等一系列表征,证明Zn-Ni-P的参与有效调变了电荷传输机制.SEM表征表明, Zn-Ni-P@g-C_3N_4为均匀排列的小颗粒,与纯g-C_3N_4相比其结构发生了改变,在Zn-Ni-P@g-C_3N_4结构中未发现g-C_3N_4纳米片的存在,说明Zn-Ni-P和g-C_3N_4成功复合.在上述研究基础上推测了可能的反应机理.  相似文献   

3.
偶氮类合成色素具有遗传毒性、致癌性和致泻性,而食源性致病菌易引发细菌性感染和食物中毒事件,食品加工过程中产生的色素废水和致病菌废水若未经妥善处理就排入水体,会对水体及环境造成污染,废水中的偶氮类色素和致病菌还会通过食物链对人体健康产生威胁.因此,寻求更为高效、绿色、安全的处理技术和净化材料有效去除食品废水中高污染性和毒害性的偶氮类色素和致病菌显得尤为迫切.g-C3N4是一种具有可见光响应的有机半导体光催化材料,广泛应用于降解污染物、杀灭致病菌、催化有机反应等领域.然而,g-C3N4本身存在着比表面积小、光吸收性能差、光氧化能力低以及光生载流子迁移效率低等缺点,限制了其光催化性能.针对上述问题,我们对g-C3N4的空间和电子结构进行了设计,将形貌调控、元素掺杂和助催化剂修饰三种改性方法相结合,以获得兼具大比表面积、优异光吸收性能、强氧化能力以及快速光生载流子迁移能力的高活性g-C3N4基光催化体系.本文通过水热法制备了氧掺杂多孔氮化碳(PCNO),通过酸剥离法制备了氧化石墨烯量子点(ox-GQDs),最后通过自组装法将助催化剂ox-GQDs修饰到PCNO上,制备了ox-GQDs/PCNO复合光催化剂.零维的ox-GQDs可以通过氢键、π-π作用和化学键作用,与二维的PCNO实现紧密接触,均匀地分散在PCNO的表面和内部孔道上.由于ox-GQDs独特的上转换特性、电子捕获能力和过氧化物酶活性,ox-GQDs/PCNO复合光催化剂具有比PCNO更佳的光吸收性能、更高的电荷转移效率以及更强的光氧化能力.因此,ox-GQDs/PCNO复合材料在降解偶氮类色素和杀灭致病菌方面均表现出更为优异的可见光催化性能,活性最佳的复合材料ox-GQDs-0.2%/PCNO降解偶氮类色素苋菜红的速率常数约是PCNO的3.1倍,并且该材料能在可见光照射4 h内杀灭99.6%的大肠杆菌,远超过PCNO 31.9%的抗菌活性.另外,光生空穴、超氧自由基和羟基自由基被证实是ox-GQDs/PCNO体系在光催化反应中产生的活性物种,可以彻底矿化偶氮类色素并有效杀灭致病菌.本研究可以拓展g-C3N4基光催化剂在环境净化领域的应用前景,并为阐明ox-GQDs在复合光催化体系中的作用提供新的见解.  相似文献   

4.
The growing frustration from facing energy shortages and unbalanced environmental issues has obstructed the long-term development of human society. Semiconductor-based photocatalysis, such as water splitting, transfers solar energy to storable chemical energy and is widely considered an economic and clean solution. Although regarded as a promising photocatalyst, the low specific surface area of g-C3N4 crucially restrains its photocatalytic performance. The macro-mesoporous architecture provides effective channels for mass transfer and full-light utilization and improved the efficiency of the photocatalytic reaction. Herein, g-C3N4 with an inverse opal (IO) structure was rationally fabricated using a well-packed SiO2 template, which displayed an ultrahigh surface area (450.2 m2·g-1) and exhibited a higher photocatalytic H2 evolution rate (21.22 μmol·h-1), almost six times higher than that of bulk g-C3N4 (3.65 μmol·h-1). The IO g-C3N4 demonstrates better light absorption capacity than bulk g-C3N4, primarily in the visible spectra range, owing to the multiple light scattering effect of the three-dimensional (3D) porous structure. Meanwhile, a lower PL intensity, longer emission lifetime, smaller Nyquist semicircle, and stronger photocurrent response (which synergistically give rise to the suppressed recombination of charge carriers) decrease the interfacial charge transfer resistance and boost the formation of photogenerated electron-hole pairs. Moreover, the existing N vacancies intensify the local electron density, helping increase the number of photoexcitons. The N2 adsorption-desorption test revealed the existence of ample mesopores and macropores and high specific surface area in IO g-C3N4, which exposes more active edges and catalytic sites. Optical behavior, electron paramagnetic resonance, and electrochemical characterization results revealed positive factors, including enhanced light utilization, improved photogenerated charge separation, prolonged lifetime, and fortified IO g-C3N4 with excellent photocatalytic performance. This work provides an important contribution to the structural design and property modulation of photocatalysts.   相似文献   

5.
Developing novel and efficient catalysts is a significant way to break the bottleneck of low separation and transfer efficiency of charge carriers in pristine photocatalysts. Here, two fresh photocatalysts, g-C3N4@Ni3Se4 and g-C3N4@CoSe2 hybrids, are first synthesized by anchoring Ni3Se4 and CoSe2 nanoparticles on the surface of well-dispersed g-C3N4 nanosheets. The resulting materials show excellent performance for photocatalytic in situ hydrogen generation. Pristine g-C3N4 has poor photocatalytic hydrogen evolution activity (about 1.9 μmol·h-1) because of the rapid recombination of electron-hole pairs. However, the hydrogen generation activity is well improved after growing Ni3Se4 and CoSe2 on the surface of g-C3N4, owing to the unique effect of these selenides in accelerating the separation and migration of charge carriers. The hydrogen production activities of G-C3N4@Ni3Se4 and g-C3N4@CoSe2 are about 16.4 μmol·h-1 and 25.6 μmol·h-1, which are 8-fold and 13-fold that of pristine g-C3N4, respectively. In detail, coupling Ni3Se4 and CoSe2 with g-C3N4 greatly improves the light absorbance density and extends the light response region. The photoluminescence intensity of the photoexcited Eosin Y dye in the presence of g-C3N4@Ni3Se4 and g-C3N4@CoSe2 is weaker than that in the presence of pure g-C3N4. On the other hand, the upper limit of the electron-transfer rate constants in the presence of g-C3N4@Ni3Se4 and g-C3N4@CoSe2 is greater than that in the presence of pure g-C3N4. Among the g-C3N4@Ni3Se4@FTO, g-C3N4@CoSe2@FTO, and g-C3N4@FTO electrodes, the g-C3N4@FTO electrode has the lowest photocurrent density and the highest electrochemical impedance, implying that the introduction of CoSe2 and Ni3Se4 onto the surface of g-C3N4 enhances the separation and transfer efficiency of photogenerated charge carriers. In other words, the formation of two star metals selenide based on g-C3N4 can efficiently inhibit the recombination of photogenerated charge carriers and accelerate photocatalytic water splitting to generate H2. Meanwhile, the right shift of the absorption band edge effectively reduces the transition threshold of the photoexcited electrons from the valence band to the conduction band. In addition, the more negative zeta potential for the g-C3N4@Ni3Se4 and g-C3N4@CoSe2 catalysts as compared with that for pure g-C3N4 leads to a notable enhancement in the adsorption of protons by the sample surface. Moreover, the results of density functional theory calculations indicate that the hydrogen adsorption energy of the N sites in g-C3N4 is -0.22 eV; further, the hydrogen atoms are preferentially adsorbed at the bridge site of two selenium atoms to form a Se―H―Se bond, and the adsorption energy is 1.53 eV. In-depth characterization has been carried out by transmission electron microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, ultraviolet-visible diffuse reflectance spectroscopy, transient photocurrent measurements, and Fourier transform infrared spectroscopy; the results of these experiments are in good agreement with one another.  相似文献   

6.
石墨相氮化碳(g-C_3N_4)纳米片因其廉价、易得、无毒等优点而在光催化领域被广泛应用和研究.但单一的g-C_3N_4存在光生电子与空穴易复合等缺陷,而助催化剂的存在可以促进电荷转移,延长载流子寿命,从而提高光催化性能.本文通过合成PtPd双金属合金纳米颗粒作为助催化剂,对g-C_3N_4纳米片光催化剂进行修饰以提高可见光照射下的光催化产氢速率.g-C_3N_4是以尿素为原材料,通过高温热缩聚和热刻蚀的方法合成, PtPd/g-C_3N_4复合光催化剂通过化学还原沉积法合成.对所获得的复合光催化剂进行了XRD测试并将结果与PdPt标准卡片进行了对比,结果表明,各峰的位置都能有较好的对应,说明成功合成了PdPt.采用TEM对PtPd/g-C_3N_4的形貌进行观察,发现g-C_3N_4呈薄片状,且PdPt颗粒较为均匀地分布在其表面.XPS测试发现, PtPd/g-C_3N_4复合样品中Pt和Pd元素的峰值较Pt/g-C_3N_4和Pd/g-C_3N_4均发生0.83eV的偏移,进一步说明合成了PtPd双金属合金纳米颗粒.DRS测试表明, g-C_3N_4的带隙宽度为2.69eV,而PtPd双金属合金纳米颗粒的负载有效地减小了禁带宽度,从而提高了光催化剂对光的利用率.光催化产氢性能实验发现,当g-C_3N_4负载PtPd双金属合金纳米颗粒后,光催化产氢速率大幅度提高,其中负载量为0.2wt%的PtPd/g-C_3N_4复合光催化剂的产氢速率最高,为1600.8μmol g~(–1)h~(–1),是纯g-C_3N_4纳米片的800倍.向光催化体系中添加10gK_2HPO_4后,产氢速率提高到2885.0μmolg~(–1)h~(–1).当二元合金中Pt:Pd比为1:1时, PtPd/g-C_3N_4复合光催化剂上的产氢速率最高,分别是Pt/g-C_3N_4和Pd/g-C_3N_4上的3.6倍和1.5倍.另外,在420nm处量子效率为5.5%.PtPd/g-C_3N_4复合光催化剂还表现出很好的稳定性,能够在完成4次光催化实验循环后仍然保持其良好的光催化活性.对PtPd/g-C_3N_4复合光催化剂进行了一系列光电化学表征.PL结果表明, PtPd/g-C_3N_4复合光催化剂与纯g-C_3N_4相比荧光强度减弱,说明PtPd/g-C_3N_4复合光催化剂有较慢的光生电子-空穴复合速率,这可以更有效地使电荷分离,从而提高光催化活性.根据光催化反应和表征分析结果提出了复合光催化剂上水分解产氢可能的机理,即PtPd/g-C_3N_4之间的协同作用有助于提高复合光催化剂的光催化活性.  相似文献   

7.
8.
从层状化合物获得的纳米片是一类新型纳米结构材料,这种二维各向异性的纳米甚至亚纳米级的材料具有独特的物理化学性能,其中最好的一个例证就是从石墨烯C3N4到石墨烯C3N4纳米片的转变。通过高温氧化热刻蚀方法将体相g-C3N4剥离成g-C3N4纳米片,应用于染料敏化可见光分解水产氢,表现出了较体相g-C3N4高于2.6倍的产氢速率。通过X射线衍射(XRD)、傅里叶变换红外(FTIR)光谱、扫描电子显微镜(SEM)、Brunauer-Emmett-Teller(BET)、荧光光谱和光电化学等表征研究了g-C3N4纳米片的结构及曙红(EY)和g-C3N4纳米片之间的电子迁移过程。热剥离后的g-C3N4纳米片具有较高的比表面积,不仅可以更为有效地吸附染料分子,还因其量子限域效应大大增强了光生电荷的分离效率和电子转移效率,改善了电子沿平面方向的传输能力以及光生载流子的寿命,从而显著提高g-C3N4纳米片的光催化产氢活性。  相似文献   

9.
本文通过简单的一步水热法得到Ni2P-NiS双助催化剂,之后采用溶剂蒸发法将Ni2P-NiS与g-C3N4纳米片结合构建获得无贵金属的Ni2P-NiS/g-C3N4异质结。研究结果表明,优化后的复合材料具有良好的光催化产氢活性,其产氢速率最高可到6892.7 μmol·g-1·h-1,分别为g-C3N4 (150 μmol·g-1·h-1)、15%NiS/g-C3N4 (914.5 μmol·g-1·h-1)和15%Ni2P/g-C3N4 (1565.9 μmol·g-1·h-1)的46.1、7.5和4.4倍。这主要归因于Ni2P-NiS相比Ni2P和NiS单体具有更好的载流子转移能力,其与g-C3N4形成的肖特基势垒能有效促进光生载流子在二者界面上的分离,同时Ni2P-NiS能进一步降低析氢过电势,进而显著增强了表面析氢反应动力学。本研究为开发稳定、高效的非贵金属产氢助剂提供了实验基础。  相似文献   

10.
以尿素作为原料, 采用熔盐辅助热聚合法在KCl-NaCl-BaCl2体系中制备了带隙可调的g-C3N4纳米结构. 采用X射线衍射仪、 扫描电子显微镜、 X射线光电子能谱仪、 紫外-可见漫反射光谱仪及荧光光谱仪对产物的结构、 形貌、 成分及光学性能进行了表征. 对g-C3N4纳米结构可见光条件下的光催化制氢性能进行了测试, 研究了不同的尿素/熔盐比对其光催化性能的影响. 结果表明, 熔盐辅助热聚合法制备的g-C3N4 纳米结构吸收光谱出现明显宽化, 吸收边由普通热聚合法制备g-C3N4的约450 nm红移至约500 nm左右. 同时光生载流子复合几率明显降低, 从而有效提升其光催化制氢性能. 最优化的g-C3N4(60)样品析氢速率达到12301.1 μmol?g?1?h?1, 为普通热聚合法制备g-C3N4析氢速率的4倍.  相似文献   

11.
The rational construction of a high-efficiency stepscheme heterojunctions is an effective strategy to accelerate the photocatalytic H2.Unfortunately,the variant energy-level matching between two different semiconductor confers limited the photocatalytic performance.Herein,a newfangled graphitic-carbon nitride(g-C3N4)based isotype step-scheme heterojunction,which consists of sulfur-doped and defective active sites in one microstructural unit,is successfully developed by in-situ polymerizing N,N-dimethylformamide(DMF)and urea,accompanied by sulfur(S)powder.Therein,the polymerization between the amino groups of DMF and the amide group of urea endows the formation of rich defects.The propulsive integration of S-dopants contributes to the excellent fluffiness and dispersibility of lamellar g-C3N4.Moreover,the developed heterojunction exhibits a significantly enlarged surface area,thus leading to the more exposed catalytically active sites.Most importantly,the simultaneous introduction of S-doping and defects in the units of g-C3N4 also results in a significant improvement in the separation,transfer and recombination efficiency of photo-excited electron-hole pairs.Therefore,the resulting isotype step-scheme heterojunction possesses a superior photocatalytic H2 evolution activity in comparison with pristine g-C3N4.The newly afforded metal-free isotype step-scheme heterojunction in this work will supply a new insight into coupling strategies of heteroatoms doping and defect engineering for various photocatalytic systems.  相似文献   

12.
作为一种非金属聚合半导体,石墨相氮化碳(g-C3N4)具有特殊的能带结构、可见光响应能力以及优良的物理化学性质以及生产成本低等特点,因而已成为目前光催化领域的研究热点.然而,由于g-C3N4被光激发的电子与空穴极易复合,导致g-C3N4材料的光催化性能并不理想.而助剂修饰是实现光生载流子有效分离以提高光催化活性的有效途径.众所周知,贵金属Pt可以作为光催化产氢的反应位点,但高昂的成本限制了它的实际应用.所以,开发高效的非贵金属助剂很有必要.近年来,NiS作为优良的电子助剂在光催化领域受到广泛关注.大量研究表明,NiS可以作为g-C3N4的产氢活性位点用于提高其光催化产氢性能.NiS助剂主要是通过水热、煅烧和液相沉淀的方法修饰在g-C3N4的表面上.相较而言,助剂的光沉积方法具有一些独特的优势,例如节能、环保、简易并且能够实现其原位牢固地沉积在光催化剂的表面.然而g-C3N4光生电子和空穴强还原和氧化能力容易导致像Ni^2+的还原和S^2-的氧化等副反应发生,因此NiS助剂很难光沉积在g-C3N4材料表面.本文采用硫调控的光沉积法成功合成了NiS/g-C3N4光催化材料,该法利用g-C3N4在光照条件下产生的光生电子结合S以及Ni^2+生成NiS,然后原位沉积在g-C3N4表面.由于E0(S/NiS)(0.096 V)比E0(Ni^2+/Ni)(-0.23 V)更正,所以NiS优先原位沉积在g-C3N4表面.因此,硫调控的光沉积法促进了NiS的生成,并抑制了金属Ni等副反应的形成.通过X射线光电子能谱分析NiS/g-C3N4的表面化学态,表明该方法能成功地将NiS修饰在g-C3N4的表面,这也得到透射电镜和高分辨透射电镜结果的证实.光催化产氢的结果表明,NiS/g-C3N4光催化剂实现了良好的光催化性能,其最优产氢速率(244μmol h^?1 g^?1)接近于1 wt%Pt/g-C3N4(316μmol h^?1 g^?1).这是因为硫调控的光沉积法实现NiS助剂在g-C3N4表面的修饰,从而促进光生电子与空穴的有效分离,进而提高光催化制氢效率.此外,在该方法中,NiS的形成通常在g-C3N4光生电子的表面传输位点上,因此也能够使NiS提供更多的活性位点以提高界面产氢催化反应速率.电化学表征结果也进一步证明NiS/g-C3N4光催化剂加快了电子与空穴的分离和转移.更重要的是,这种简易且通用的方法还可以实现CoSx,CuSx,AgSx对g-C3N4的助剂修饰,并且都提高了g-C3N4的光催化产氢性能,表明该方法具有一定的普适性,为高效光催化材料的合成提供了新的思路.  相似文献   

13.
Platinum (Pt) is recognized as an excellent cocatalyst which not only suppresses the charge carrier recombination of the photocatalyst but also reduces the overpotential for photocatalytic H2 generation. Albeit of its good performance, the high cost and low abundance restricted the utilization of Pt in large-scale photocatalytic H2 generation. Pt based transition metal alloys are demonstrated to reveal enhanced activities towards various catalytic reactions, suggesting the possibility to substitute Pt as the cocatalyst. In the present work, Pt was partially substituted with Co, Ni, and Fe and Pt-M (M = Co, Ni, and Fe)/g-C3N4 composites were constructed through co-reduction of H2PtCl6 and transition metal salts by the reductant of ethylene glycol. The crystal structure and valence states were measured by X-ray diffractometer (XRD) and X-ray photoelectron spectrometer (XPS), respectively. The higher degree of XRD peaks and larger binding energies for Pt 4f5/2 and Pt 4f7/2 after incorporating Co2+ ions indicated that Co was successfully introduced into the lattice of Pt and Pt-Co bimetallic alloys was attained through the solvothermal treatment. The morphology was subsequently observed by transmission electron microscope (TEM), which showed a good dispersion of Pt-Co nanoparticles on the surface of g-C3N4. Meanwhile, the shrinkage of lattice fringe after introducing cobalt salt further confirmed the presence of Pt-Co bimetallic alloys. The UV-Vis absorption spectra of g-C3N4 and Pt, Pt-Co deposited g-C3N4 were subsequently performed. It was found that the absorption edges were all consistent for all three samples as anticipated, implying that the band gap energy was maintained after hybridizing with Pt or Pt-Co alloys. Furthermore, the photocatalytic H2 generation was carried out over the as-prepared composites with triethanolamine (TEOA) as sacrificial reagent. Under visible-light illumination, the1% (w) Pt2.5M/g-C3N4 (M = Co, Fe, Ni) composites all exhibited higher or comparable activity towards photocatalytic H2 generation when compared to 1% (w) Pt loaded counterpart. In addition, the atomic ratios of Pt/Co and the loading amount of Pt-Co cocatalyst were modified to optimize the photocatalytic performance, among which, 1% (w) Pt2.5Co/g-C3N4 composite revealed the highest activity with a 1.6-time enhancement. Electrochemical impedance spectra (EIS) and photoluminescence (PL) spectra indicated that the enhancement might be attributed to improved charge transfer from g-C3N4 to Pt2.5Co cocatalyst and inhibited charge carrier recombination in the presence of Pt2.5Co cocatalyst. Therefore, the present study demonstrates the great potential to partially replace Pt with low-cost and abundant transition metals and to fabricate Pt based bimetallic alloys as promising cocatalysts for highly efficient photocatalytic H2 generation.  相似文献   

14.
朱必成  张留洋  程蓓  于岩  余家国 《催化学报》2021,42(1):115-122,后插10
气体分子与光催化剂之间的相互作用对于光催化反应的触发非常重要.对于TiO2,ZnO和WO3等传统金属氧化物光催化剂上的水分解反应而言,已有许多报道研究了水分子在它们表面的吸附行为.结果表明,水分子与催化剂表面的原子形成了O-H…O氢键.石墨相氮化碳(g-C3N4)是一种具有可见光响应且化学性质稳定的光催化剂,对其进行修饰以增强其分解水产氢性能的研究非常多.本文通过密度泛函理论计算,全面研究了水分子在均三嗪(s-triazine)基g-C3N4上的吸附情况.首先构建了一系列初始吸附模型,考察了各种吸附位和水分子的朝向.通过比较分析计算得到的吸附能,确定了一种最优的吸附构型,即水分子以竖直的朝向吸附于褶皱的单层g-C3N4表面.水分子中的一个极性O-H键与g-C3N4中一个二配位富电子的氮原子结合形成了分子间的O-H…N氢键.其中,H原子与N原子的间距为1.92?,O-H键的键长由0.976?增至0.994?.进一步通过计算Mulliken电荷,态密度和静电势曲线分析了该吸附体系的电子性质.结果发现在分子间氢键的桥接作用下,g-C3N4上的电子转移至水分子,由此导致g-C3N4的费米能级降低,功函数由4.21 eV增至5.30 eV.在该吸附模型的基础上,考查了不同的吸附距离.当水分子与g-C3N4的间距设为1至4?时,几何优化后总是能得到相同的吸附构型,吸附能和氢键长度也十分相近.随后,通过改变吸附基底g-C3N4的大小和形状,验证了这种吸附构型具有很强的重复性.将2′2单层g-C3N4吸附基底替换为2′2多层g-C3N4(2至5层),3′3和4′4单层g-C3N4,以及具有不同管径的单壁g-C3N4纳米管后,水分子的吸附能随着体系原子数的增多而增大,但吸附模型的几何结构和电子性质基本不变,包括O-H…N氢键的形成和键长,以及电子转移和增大的功函数.另外还研究了非金属元素(P,O,S,Se,F,Cl和Br)掺杂对吸附能的影响.构建模型时,杂质原子以取代二配位氮原子的方式进行掺杂,水分子放置于杂质原子上方.结果显示,引入杂质原子后水分子的吸附能增大,在理论上从吸附的角度解释了元素掺杂增强g-C3N4分解水活性.总之,本文揭示了一种在分子间氢键的作用下,具有高取向性的水分子吸附的g-C3N4构型,这有助于g-C3N4基光催化剂上水分解过程的理解和优化设计.  相似文献   

15.
采用水热方法制备了ZnIn2S4/g-C3N4复合材料, 并通过X射线衍射(XRD)、 傅里叶变换红外光谱(FTIR)、 紫外-可见漫反射光谱(UV-Vis DRS)、 透射电子显微镜(TEM)和荧光光谱(PL)等手段对其结构和性能进行表征. 结果表明, 当ZnIn2S4的负载量为20%(质量分数)时, 复合材料表现出最佳的光催化制氢性能, 制氢速率可达到637.08 μmol·g-1·h-1, 分别为纯ZnIn2S4和纯g-C3N4的4倍和37倍. 其原因在于ZnIn2S4和g-C3N4之间具有紧密的异质结结构, 两者有效的结合改善了组分的能带匹配和界面电荷转移, 从而大幅增强了载流子的分离和迁移, 进而提高光催化的性能.  相似文献   

16.
随着工业技术的飞速发展,大量有机污染物被应用于生活的各个领域,由此带来了严重的环境问题。众所周知,半导体光催化技术是一种有效且环境友好的降解去除典型污染物的方法,而光催化剂在该技术的应用中起着关键作用。因此,在光催化污染物降解领域,人们已经尝试研究了各种半导体材料。其中石墨相氮化碳(g-C3N4)是近年来公认的“明星”材料之一。因其独特的二维层状结构和良好的可见光响应而引起了人们的极大兴趣。由于带隙较窄(~2.7 eV)、能带结构可调以及良好的物理化学稳定性,g-C3N4对太阳光谱的吸收可达450 nm,具有一定的可见光光催化性能。然而,g-C3N4在去除抗生素和染料方面的降解效率仍然存在不足,例如光生电荷的快速复合以及空穴的氧化能力弱等。为了优化这种有前景的光催化材料,人们尝试了多种方法来改善g-C3N4的电子能带结构,例如金属/非金属元素掺杂、形貌调控和官能团修饰等。最近,人们提出了由两种N型半导体光催化剂组成的梯形异质结理念,它可以利用半导体材料更正的价带和更负的导带。相关结果表明,构筑梯形异质结是提高g-C3N4光催化活性的最有效方法之一。因此,本文通过简单的原位溶剂热生长法制备了新型0D/2D Bi4V2O11/g-C3N4梯形异质结光催化剂。Bi4V2O11/g-C3N4复合材料对去除土霉素(OTC)和活性红染料展示出了优异的光催化活性。尤其是BVCN-50复合材料对OTC和活性红的降解效率高达74.1%和84.2%,该过程的主要活性物种为·O2-。大幅增强的光催化性能归因于Bi4V2O11和g-C3N4之间形成的梯形异质结保持了光催化体系的强氧化还原能力(Bi4V2O11的强氧化能力和g-C3N4的强还原能力),并促进了光生电荷的空间分离。此外,金属Bi0的表面等离子共振效应可以拓宽异质结系统的光吸收范围。此外,基于高效液相色谱-质谱联用(LC-MS)分析,我们研究了OTC降解过程中可能的中间体和降解路径。这项工作为设计和制备g-C3N4基梯形异质结用于抗生素和活性染料降解提供了一种新的策略。  相似文献   

17.
采用光-微热量-荧光光谱联用系统获取了g-C_3N_4@Ag_3PO_4光降解罗丹明B(RhB)的原位热/动力学信息和三维荧光光谱信息,并结合热力学和光谱学结果探究了光催化降解罗丹明B的微观机制.结果表明,光催化降解过程主要分为表观吸热、热平衡以及稳定放热3个阶段.在g-C_3N_4@Ag_3PO_4存在下,可见光照射10 min后,罗丹明B的三维荧光特征发射峰强度降低至初始值的7.1%,罗丹明B的降解脱色率达92.9%,是相同条件下以纯g-C_3N_4为催化剂时的2.06倍.随着光照时间的延长,光-微热量计显示10 min后以降解及矿化非荧光中间产物为主,并保持热焓变化率为-(0.226±0.0916)mJ/s稳定放热,为拟零级反应过程,并且该阶段为光催化反应的决速步骤.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号