首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
近年来,Fenton反应由于其成本低,反应速度快,操作简单等优势受到了广泛的研究.传统的均相Fenton反应可通过H2O2氧化Fe2+产生具有强氧化性的羟基自由基,用于处理难降解的有机物.然而,Fenton反应存在两个主要问题,首先,在Fenton反应中需要加入大量的酸来维持酸性环境,以保证反应的最佳活性.其次,Fenton反应中铁离子不断流失并形成固体污泥,这严重影响了Fenton反应产生?OH的效率.目前,将光催化反应与非均相芬顿反应相结合是改善这些问题的有效方案.非均相光芬顿反应不仅能提高有机物降解的活性,而且通过光催化剂导带上的电子有效减少Fe^3+的浸出和铁氢氧化物沉淀的产生.最近,作为一种可见光Fenton催化剂,α-Fe2O3可以在几乎中性的条件下发生光芬顿反应,这解决了在反应过程中需要随时调整PH值的问题.此外,光照条件下α-Fe2O3价带上的电子能跃迁至导带并将Fe3+还原成Fe^2+,从而减少铁离子的损耗.然而,由于光生载流子复合率较高等问题,单一α-Fe2O3光催化剂的催化活性仍不理想.构建具有2D/2D结构的S型异质结可以缩短电子在界面间的传输距离,增大材料的活性位点,将光生电子-空穴在空间上分离,从而有效增强光生载流子的分离效率.因此,构建2D/2Dα-Fe2O3/Bi2WO6 S型异质结,并用于光芬顿反应有望进一步提高对有机污染物的降解效率.本文通过简易的水热法制备了具有2D/2D结构的α-Fe2O3/Bi2WO6 S型异质结光芬顿催化剂,并通过XRD、BET、TEM、XPS和UV-Vis等手段对催化剂的晶体结构、元素状态、微观结构、光学性质和化学组分进行了表征.通过在可见光照射下降解甲基蓝(MB),考察了α-Fe2O3/Bi2WO6的光芬顿催化活性.结果表明,由于光催化反应与Fenton反应的协同作用,α-Fe2O3/Bi2WO6表现出了明显增强的光-Fenton催化活性,最佳比例的α-Fe2O3/Bi2WO6的活性分别是单一α-Fe2O3和Bi2WO6的11.06倍和3.29倍.本文将光催化反应与Fenton反应相结合,一方面,光催化反应对Fe^3+的还原有促进作用,提高了Fe2+的浓度,从而提升羟基自由基的产量;另一方面,Fenton反应对α-Fe2O3/Bi2WO6中电子的利用阻止了光生载流子的复合,进一步提高了光催化降解效率.此外,由于二维纳米片之间具有更大的接触面积,2D/2D异质结可以缩短电荷传输时间和距离,促进了光生电子-空穴的分离.同时,具有较大比表面积的2D/2D材料可以在催化剂表面提供大量用于有机物氧化分解的活性位点.而S型异质结的构建不但促进了界面电荷的转移和分离,还能维持最佳的电荷氧化还原电位,这都提升了催化剂的光芬顿催化活性.总之,本文为合成可高效降解有机污染物的非均相光-芬顿催化剂提供了新的思路.  相似文献   

2.
全球工业化进程的加快使人们饱受环境污染问题的困扰.半导体光催化技术作为一种高效、绿色、有潜力的新技术,在环境净化方面有着广阔的应用前景.Bi2O4是近年来新开发出的一种铋基光催化剂,在环境净化方面已有一些研究.但是,单体光催化剂通常存在光响应范围窄、光生载流子复合率高等问题,这些不足限制了Bi2O4的进一步应用.因此,需要通过适当的改性来拓宽其光响应范围和提高其载流子的分离效率,从而提高其光催化活性.构建Z型异质结被认为是提高光催化剂光生载流子分离效率并进一步提高光催化活性的有效方法.MoO3是一种宽禁带的n型半导体,具有独特的能带结构、光学特性和表面效应,是一种非常有前景的半导体光催化剂.虽然MoO3材料的光生载流子复合率高,带隙(2.7-3.2 eV)大,不利于其参与光催化反应,但MoO3与其他合适的半导体配位形成复合材料后能够有效提高其光生载流子的分离效率,从而提高其光催化活性.本研究采用简单的水热法制备了一种新型Z型MoO3/Bi2O4复合光催化剂,SEM和TEM分析结果表明,MoO3和Bi2O4紧密结合在一起.X射线光电子能谱分析表明,MoO3和Bi2O4之间存在很强的界面相互作用,这有助于电荷转移和光生载流子的分离.光致发光光谱、电阻抗和光电流测试也证明了MoO3/Bi2O4复合光催化剂的光生载流子分离效率更高,形成了更强的光电流.通过在可见光下降解RhB溶液评价了所合成光催化剂的光催化性能.15%MoO3/Bi2O4(15-MB)复合光催化剂表现出了最佳的可见光催化活性,在40 min内对10 mg/L RhB溶液的降解率达到了99.6%,其降解速率是Bi2O4的2倍.此外,15-MB复合光催化剂在经过五次循环降解RhB溶液后仍保持良好的光催化活性和稳定性,表明MoO3/Bi2O4复合光催化剂具有较强的应用潜力.通过自由基捕获实验确定了光催化反应中主要的活性自由基为 O2-和h+.通过莫特-肖特基测试和带隙计算得到MoO3和Bi2O4的价带和导带位置.最后,根据实验和分析结果提出了Z型MoO3/Bi2O4复合光催化剂在可见光下降解RhB溶液的机理.本研究为设计铋基Z型异质结光催化剂用于高效去除环境污染物提供了一种有前景的策略.  相似文献   

3.
窄带隙Bi OI光催化剂因电荷重组速率快而导致其可见光下的光催化效率较低.本文以NaBH4为还原剂,采用简单的常温原位组装法在Bi OI上构建氧空位、金属Bi颗粒和Bi_2O_2CO_3共作用,以克服Bi OI的缺点.在合成的三元Bi/BiOI/(BiO)_2CO_3中,氧空位、双异质结(即Bi/BiOI和Bi OI/(BiO)_2CO_3)以及Bi粒子的表面等离子体共振效应均促进了电子-空穴分离和电荷载流子浓度的增加,从而提高了可见光的整体光催化效率.将制备的催化剂用于可见光下去除连续流空气中的ppb级NO.结果表明, Bi/BiOI/(BiO)_2CO_3的NO去除率显著增强,大约为50.7%,并远高于BiOI(1.2%).密度泛函理论计算和实验结果表明, Bi/BiOI/(BiO)_2CO_3复合材料可明显促进光催化NO氧化的活性氧生成.本文可提供一个新的策略来改性窄带隙半导体和探索其他含铋异质结构的可见光驱动光催化剂.XRD结果发现, BOI-70中出现Bi和(BiO)_2CO_3的特征峰,但BOI却很微弱; XPS结果表明,高价态Bi~(3+)被NaBH4部分还原而形成低价态金属Bi颗粒,且I3d峰位结合能进一步证实了BOI-70样品中存在BiOI,由此可见,成功制备了三元Bi/BiOI/(BiO)_2CO_3异质结催化剂, EPR结果表明氧空位的产生.SEM和TEM结果表明, Bi OI和三元Bi/BiOI/(BiO)_2CO_3催化剂为纳米片组装的花状结构.HRTEM的结果进一步显示了金属铋、正方晶相Bi OI和(BiO)_2CO_3对应的晶格间距.紫外-可见光催化去除NO的测试结果表明, BOI-70(50.7%)的光催化活性明显高于BOI(1.2%)和P25(11.5%),且在循环测试实验中表现出优异的稳定性.UV-visDRS测试结果显示, BOI-70具有更强的光吸收;PL结果表明,其光生电子-空穴对的分离效率更高.ESR结果表明,参与反应的主要活性物种为·O2-和·OH自由基.DFT计算结果证实了OVs对电荷载流子的局部环境和快速传输:OV为电子捕获陷阱,使电子从OVs转移到O_2分子形成活性氧物种;O2表面的吸附能从无缺陷BiOI时的–0.29 e V降到有缺陷的–0.76 eV, O-O键长从1.30增至1.37?,说明OVs通过降低氧的吸附能可促进O2分子在光催化剂表面的吸附.综上所述,由于BiNPs的异质结效应和SPR效应以及OVs的存在, Bi/BiOI/(BiO)_2CO_3三元体系的原位组装通过增加载流子浓度和加速电子空穴分离使光催化活性显著增加.  相似文献   

4.
半导体光催化技术是目前最有前景的绿色化学技术,可通过利用太阳光降解污染物或制氢.作为有潜力的半导体催化剂,钼酸铋具有合适的带隙(2.58 eV).但是,由于低的量子产量,钼酸铋的光催化性能并不理想.为了提高钼酸铋的光催化性能,研究者多考虑采取构造异质结的方式.石墨相氮化碳(g-C3N4)能带位置合适,与多种光催化半导体能带匹配,是构造异质结的常用选择.因此,本文选用g-C3N4与钼酸铋复合,构造异质结结构.为了进一步提高光催化性能,多采用负载贵金属(Pt,Au和Pd)作为助催化剂,利用贵金属特有的等离子共振效应,增加光吸收,促进载流子分离,但贵金属价格昂贵.Bi金属单质价格便宜,具备等效的等离子共振效应,是理想的贵金属替代物.钼酸铋可以采取原位还原的方式还原出Bi单质,构造更紧密的界面结构,更有利于载流子传输.Bi的等离子共振效应可以有效提高材料的光吸收能力和光生载流子分离率.本文采用溶剂热和原位还原方法成功合成了一种新型三元异质结结构g-C3N4/Bi2MoO6/Bi(CN/BMO/Bi)空心微球.结果显示,三元异质结结构的最佳配比为0.4CN/BMO/9Bi,该样品表现出最好的光催化降解罗丹明B效率,是纯钼酸铋的9倍.通过计算DRS和XPS的价带数据,0.4CN/BMO/9Bi是一种Z字型异质结.牺牲试剂实验也提供了Z字型异质结的有力证据,测试显示超氧自由基·O^2-(在-0.33 eV)是光催化降解的主要基团.但是,钼酸铋的导带位置低于-0.33 eV,g-C3N4的导带高于-0.33 eV,因此g-C3N4的导带是唯一的反应位点,从而证明了光生载流子的转移是通过Z字型异质结结构实现的.TEM图显示金属Bi分散在钼酸铋表面.DRS和PL图分析表明金属Bi增加了材料的光吸收能力,同时扮演了中间介质的角色,促进钼酸铋导带的电子和g-C3N4价带的空穴快速复合.因此,g-C3N4/Bi2MoO6/Bi的优异光催化性能主要归功于Z字型异质结和Bi金属的等离子共振吸收效应,提高了材料的光吸收能力和光生载流子分离率.  相似文献   

5.
社会经济快速发展的同时, 也带来了日益严峻的环境污染问题. 半导体光催化氧化技术因节能环保而在环境领域有广阔的应用前景. 作为最具有代表性的半导体光催化材料, TiO2因为其禁带宽度(3.2 eV)比较大, 只能被紫外光激发, 因而对太阳能的利用率较低. 作为一种最简单的含铋层状氧化物, Bi2WO6的禁带宽度(2.7 eV)相对较小, 可以部分利用太阳光中的可见光, 因而受到广大研究者的青睐. 但是, Bi2WO6光催化材料的可见光响应范围较窄, 仅能被波长小于450 nm的光激发, 且激发后的光生载流子容易复合, 导致光催化效率不高. 因此, 迫切需要对Bi2WO6光催化材料进行结构修饰与改性,采用拓展其光响应范围和抑制载流子复合, 来提高其光催化活性.本文采用离子交换法原位合成了具有核-壳结构的Bi2S3@Bi2WO6纳米片, 充分利用Bi2S3优良的可见光响应性能和半导体异质结光催化剂的构建, 来提高Bi2WO6的光催化活性. 结果表明, 随着Na2S·9H2O用量从0增加到1.5 g, 所得催化剂的光活性不断提高, X3B的降解速率常数由0.40×10-3min-1增加到6.6×10-3min-1, 催化剂活性提高了16.5倍. 当进一步增加Na2S·9H2O的用量时(1.5-3.0 g), 复合催化剂的光活性下降. 这是由于过多Na2S·9H2O的引入导致在催化剂表面生成了没有光活性的NaBiS2层(Bi2S3+ Na2S = 2NaBiS2), 占据了催化剂的活性位点, 阻碍了染料分子与催化剂的直接接触. Bi2WO6@Bi2S3异质结纳米片光活性的提高, 可归因于Bi2S3的敏化作用极大拓展了复合催化剂的光响应范围; 另一方面, Bi2WO6和Bi2S3两者之间的半导体异质结效应有效促进了光生载流子在空间的有效分离, 抑制了光生电子-空穴的复合, 从而提高了复合催化剂的催化效率. 本研究为其他半导体复合材料的原位生长制备提供了新的思路.  相似文献   

6.
韩穗奇  李佳  杨凯伦  林隽 《催化学报》2015,(12):2119-2126
窄带半导体氧化铋(Bi2O3,带宽介于2.1-2.8 eV)因其强的可见光吸收和无毒性等特性而一直被认为是潜在的可见光催化材料.通常, Bi2O3具有a,b,g,d,e和w等六种晶型,其中,a,b和d-Bi2O3具有催化可见光降解有机物的活性.可是,由于其光生电子-空穴复合较快, Bi2O3的光催化活性还很低,远不够实际应用.将半导体与另一种物质如贵金属或其他半导体复合形成异质结是一种有效控制光生电子-空穴复合,提高光催化活性的方法.目前已成功开发了许多Bi2O3基的异质结光催化材料.尤其是通过用卤化氢酸与a-Bi2O3直接作用原位形成的a-Bi2O3与铋的卤氧化合物BiOX (X = Cl, Br或I)的异质结在提高光催化活性和制备方面显示了优越性.然而,具有更强可见光吸收的b-Bi2O3(带宽约2.3 eV)与卤氧化合物的异质结光催化性能却鲜有报道.本文通过用HI原位处理b-Bi2O3形成b-Bi2O3/BiOI异质结.该异质结表现较纯b-Bi2O3和BiOI更高的降解甲基橙(MO)可见光催化活性.通过多晶X射线衍射(XRD)、紫外漫散射(UV-DRS)、扫描电镜、透射电镜(TEM)、X光电子能谱(XPS)和荧光(PL)等手段研究了b-Bi2O3/BiOI异质结,并提出其高催化活性的机理. XRD结果显示,用HI原位处理b-Bi2O3可形成BiOI相,并且随着HI使用量增加,混合物中的BiOI相逐渐增多. HRTEM结果进一步表明,在混合物中的b-Bi2O3和BiOI都是高度结晶态,且两相之间有很好的接触,从而有利于两相之间的电荷移动.根据UV-DRS和ahv =A(hv –Eg)n/2等公式,计算出了b-Bi2O3和BiOI带隙分别为2.28和1.77 eV,以及两种半导体的导带和价带位置. b-Bi2O3的导带和价带位置分别为0.31和2.59 eV,而BiOI的导带和价带位置分别为0.56和2.33 eV.这样两种半导体能带结构呈蜂窝状,显然不适合光生电子-空穴的分离.然而, XPS测定结果显示,b-Bi2O3和BiOI相互接触形成异质结后,b-Bi2O3相的电子向BiOI相发生了明显的移动.根据文献报道,当两种费米能级不同的半导体接触时,电子会从费米能级高的半导体移向费米能级低的半导体,直至建立新的费米能级.b-Bi2O3被报道是典型的n型半导体,其费米能级在上靠近其导带位置;而BiOI是典型的p型半导体,其费米能级在下靠近其价带位置.基于此,我们提出了b-Bi2O3/BiOI异质结高催化活性的机理.当b-Bi2O3与BiOI形成异质结时,由于b-Bi2O3的费米能级较BiOI的高,因而电子从b-Bi2O3转向BiOI,直至新的费米能级形成.因此电子在两相之间移动导致了b-Bi2O3能带结构整体下移,以及BiOI能带结构整体上移,使得新形成的BiOI导带和价带位置高于b-Bi2O3的.当该异质结在可见光的照射下,光生电子将移至b-Bi2O3的导带,而空穴会移至BiOI的价带,最终达到了光生电子-空穴分离的效果,产生高的光催化活性. PL测试也证实了b-Bi2O3/BiOI异质结具有更长的光生电子-空穴寿命.  相似文献   

7.
表面相变及Pt负载的BiOBr纳米片的协同光催化效应   总被引:1,自引:0,他引:1  
通过热处理手段考察了BiOBr纳米片的表面相变过程。通过XRD,Raman,SEM,TEM,UV-Vis-DRS等手段对不同热处理温度下样品的结构进行表征。结果表明,高温热处理下(≥400℃),BiOBr相向Bi24O31Br10相转变,可形成BiOBr/Bi24O31Br10异质结。通过气相乙醛的降解,并与商用P25 TiO2做比较来评估催化剂的光催化性能,测得活性顺序为:P25 TiO2BiOBrBiOBr/Bi24O31Br10。能带结构分析可知BiOBr与Bi24O31Br10间形成I型异质结不利于电荷分离,因而活性降低。然而,当同样条件下于上述催化剂表面负载Pt后,测得光催化活性顺序为:(BiOBr/Bi24O31Br10)-PtBiOBr-PtP25 TiO2-Pt。(BiOBr/Bi24O31Br10)-Pt的最高活性归因于BiOBr/Bi24O31Br10异质结与Pt负载的协同分离光生载流子过程,即与BiOBr/Bi24O31Br10界面的光生空穴转移,BiOBr/Pt及Bi24O31Br10/Pt界面的光生电子转移、累积及开启双电子还原O2的一系列过程有关。  相似文献   

8.
窄带半导体氧化铋(Bi2O3,带宽介于2.1-2.8 e V)因其强的可见光吸收和无毒性等特性而一直被认为是潜在的可见光催化材料.通常,Bi2O3具有α,β,γ,δ,ε和ω等六种晶型,其中,α,β和δ-Bi2O3具有催化可见光降解有机物的活性.可是,由于其光生电子-空穴复合较快,Bi2O3的光催化活性还很低,远不够实际应用.将半导体与另一种物质如贵金属或其他半导体复合形成异质结是一种有效控制光生电子-空穴复合,提高光催化活性的方法.目前已成功开发了许多Bi2O3基的异质结光催化材料.尤其是通过用卤化氢酸与α-Bi2O3直接作用原位形成的α-Bi2O3与铋的卤氧化合物Bi OX(X=Cl,Br或I)的异质结在提高光催化活性和制备方面显示了优越性.然而,具有更强可见光吸收的β-Bi2O3(带宽约2.3 e V)与卤氧化合物的异质结光催化性能却鲜有报道.本文通过用HI原位处理β-Bi2O3形成β-Bi2O3/Bi OI异质结.该异质结表现较纯β-Bi2O3和Bi OI更高的降解甲基橙(MO)可见光催化活性.通过多晶X射线衍射(XRD)、紫外漫散射(UV-DRS)、扫描电镜、透射电镜(TEM)、X光电子能谱(XPS)和荧光(PL)等手段研究了β-Bi2O3/Bi OI异质结,并提出其高催化活性的机理.XRD结果显示,用HI原位处理β-Bi2O3可形成Bi OI相,并且随着HI使用量增加,混合物中的Bi OI相逐渐增多.HRTEM结果进一步表明,在混合物中的β-Bi2O3和Bi OI都是高度结晶态,且两相之间有很好的接触,从而有利于两相之间的电荷移动.根据UV-DRS和αhv=A(hv–Eg)n/2等公式,计算出了β-Bi2O3和Bi OI带隙分别为2.28和1.77 e V,以及两种半导体的导带和价带位置.β-Bi2O3的导带和价带位置分别为0.31和2.59 e V,而Bi OI的导带和价带位置分别为0.56和2.33 e V.这样两种半导体能带结构呈蜂窝状,显然不适合光生电子-空穴的分离.然而,XPS测定结果显示,β-Bi2O3和Bi OI相互接触形成异质结后,β-Bi2O3相的电子向Bi OI相发生了明显的移动.根据文献报道,当两种费米能级不同的半导体接触时,电子会从费米能级高的半导体移向费米能级低的半导体,直至建立新的费米能级.β-Bi2O3被报道是典型的n型半导体,其费米能级在上靠近其导带位置;而Bi OI是典型的p型半导体,其费米能级在下靠近其价带位置.基于此,我们提出了β-Bi2O3/Bi OI异质结高催化活性的机理.当β-Bi2O3与Bi OI形成异质结时,由于β-Bi2O3的费米能级较Bi OI的高,因而电子从β-Bi2O3转向Bi OI,直至新的费米能级形成.因此电子在两相之间移动导致了β-Bi2O3能带结构整体下移,以及Bi OI能带结构整体上移,使得新形成的Bi OI导带和价带位置高于β-Bi2O3的.当该异质结在可见光的照射下,光生电子将移至β-Bi2O3的导带,而空穴会移至Bi OI的价带,最终达到了光生电子-空穴分离的效果,产生高的光催化活性.PL测试也证实了β-Bi2O3/Bi OI异质结具有更长的光生电子-空穴寿命.  相似文献   

9.
分别采用Na Bi O3和Bi(NO3)3为Bi源制备了Bi掺杂Na Ta O3光催化剂,研究了Bi离子的价态对Na Ta O3光催化分解水制氢性能的影响.采用X射线衍射(XRD)、拉曼光谱、X射线光电子能谱(XPS)和紫外-可见吸收光谱研究了催化剂的晶体结构、Bi离子的化学状态和催化剂的光学吸收性能.以光催化分解水制氢反应研究了Bi离子掺杂Na Ta O3的催化性能.XRD结果表明,对于两个不同Bi源掺杂的Na Ta O3样品,Bi离子的掺杂没有改变催化剂的单斜相结构,但拉曼光谱证实Bi离子的掺杂致使Ta–O–Ta键角偏离了180o.XPS结果表明,以Bi(NO3)3为Bi源时,Bi离子以Bi3+掺杂于Na Ta O3的A位;当以Na Bi O3为原料时,Bi3+和Bi5+共掺杂于Na Ta O3的A位.两种不同Bi源掺杂得到的样品在紫外-可见吸收光谱中给出了相似的光学吸收,但Bi3+的掺杂对Na Ta O3光催化性能影响不大,而Bi3+和Bi5+共掺杂大大提高了Na Ta O3的光解水制氢性能.Bi离子取代Na离子在A位的掺杂,在Na Ta O3结构中引入了能够促进载流子分离的空位和缺陷;与此同时,Bi的掺杂导致Ta–O–Ta键角偏离180o而不利于载流子迁移.对于Bi3+掺杂的Na Ta O3样品,这两种作用相互抵消,使得其催化性能与Na Ta O3相比没有变化;而Bi3+和Bi5+的共掺杂和高价态Bi5+的掺杂引入了更多的空位和缺陷,提高了光生电子-空穴的分离效率,从而提高了光催化产氢性能.研究表明,光催化过程中载流子的迁移是影响催化性能的重要因素,而在ABO3钙钛矿结构的A位引入高价态离子是促进光生载流子分离的有效途径.  相似文献   

10.
具有等离子体效应的贵金属Au和Ag等常被用于修饰半导体光催化剂.非贵金属Bi成本低,来源丰富,最近被报道可以直接作为等离子体光催化剂应用于空气中NO净化.为了进一步提高Bi单质的光催化活性,需对其进行改性.SiO2的禁带宽度过大,不能单独作为光催化剂,但它的稳定性好,比表面积大,因而常作复合材料用于提高光催化剂的反应效率、稳定性及对反应物的吸附能力.目前,尚未见SiO2修饰Bi单质的相关报道.本文通过溶剂热法制备了SiO2@Bi微球,并对其微结构进行了表征,对光催化氧化NO的反应过程进行了原位漫反射红外光谱(DRIFTS)分析,揭示了Bi–O–Si键在提升SiO2@Bi光催化氧化NO性能中的作用机制.结果显示,用SiO2纳米颗粒修饰Bi球,形成的Bi–O–Si键作为热电子传输通道,能显著提高Bi单质光催化氧化去除NO的能力.扫描电镜、透射电镜、傅里叶变换红外光谱和X射线光电子能谱等表征结果表明,SiO2纳米颗粒负载于Bi球上,且SiO2@Bi内形成了Bi–O–Si键.作为光生热电子的传输通道,Bi–O–Si键能促进光生电子的转移和载流子的分离,提高活性自由基?OH和?O2?的产量,增强SiO2@Bi在紫外光下等离子体光催化氧化NO的能力.自由基捕获测试(ESR)表明,SiO2@Bi在光催化反应中产生的?OH和?O2?数量均明显高于单质Bi在反应中形成自由基的数量.原位DRIFTS发现,Bi–O–Si键能快速转移光生电子,从而有利于NO→NO2→NO3?反应的进行.此外,SiO2@Bi的比表面积变大,因而对NO的吸附能力增强,同时促进了光催化反应.本文揭示了SiO2@Bi等离子体光催化性能增强的微观机制和光催化氧化NO的反应机理,为Bi基光催化剂的改性和应用提供了新的认识.  相似文献   

11.
任雨雨  李源  吴晓勇  王金龙  张高科 《催化学报》2021,42(1):69-77,后插1
近年来,随着工业化和城镇化的飞速发展,作为一种典型的空气污染物,NOx已经造成严重的环境问题,甚至威胁到人类的身体健康.为了解决这个问题,科研工作者研发了许多NOx去除技术,其中光催化技术被认为是一种能有效地去除空气中NOx的技术.作为一种廉价、无毒、热稳定性强、能带结构合适的光催化材料,石墨相氮化碳(g-C3N4)能够有效的利用可见光,将NO光催化氧化为NO3^-.但是由于自身的光生载流子复合率较高,光谱响应范围较窄等缺点,g-C3N4不能有效的光催化去除空气中持续流动的低浓度NO,限制了其在光催化领域中的实际应用.因此,有必要合成出高催化活性、高光响应范围的S型复合光催化剂来克服以上光催化材料的不足.为此,我们利用超声辅助法制备了一系列的S型Sb2WO6/g-C3N4复合光催化剂,呈现出优异的光催化活性:与其纯组分相比,所制备的15-Sb2WO6/g-C3N4复合光催化剂在可见光下照射30 min,可去除68%以上的持续流动的NO(初始浓度400 ppb),且五次循环实验后,Sb2WO6/g-C3N4复合光催化剂仍然具备良好的光催化活性和稳定性.透射电子显微镜结果清楚地表明,Sb2WO6颗粒已成功地均匀地负载到g-C3N4纳米片表面.紫外可见漫反射光谱的结果表明,Sb2WO6和g-C3N4的复合可以有效地提高对可见光的吸收能力.与纯g-C3N4样品相比,复合样的吸收带边具有明显的红移.光致发光光谱结果表明,在Sb2WO6/g-C3N4复合半导体中,光生载流子的复合受到抑制.光电流与电阻抗分析可知,与纯Sb2WO6和g-C3N4相比较,在15-Sb2WO6/g-C3N4复合光催化剂中的光生载流子的迁移速率和分离效率较高.通过对样品的能带结构分析并已有参考文献,我们认为Sb2WO6和g-C3N4的接触边界形成了S型异质结,使光生载流子的转移速率更快,改善了光生电子-空穴对分离,而且增强可见光的利用效率,从而提高了光催化性能.自由基捕获实验结果证实,?O2^-主导了Sb2WO6/g-C3N4复合光催化剂去除NO反应,h^+也在一定程度上参与了光催化氧化NO的反应.通过原位红外光谱技术研究了Sb2WO6/g-C3N4光催化NO氧化的反应机理,研究发现,Sb2WO6/g-C3N4复合光催化剂光催化去除是氧诱导的反应.具体反应机理是在可见光的驱动下,光催化剂表面的光生电子会与被吸附的O2反应生成?O2^-,并与光生h^+一起,共同将低浓度的NO光催化氧化为亚硝酸盐或硝酸盐.该研究有助于深入研究光催化氧化NO机理,并为设计高效光催化剂用于光催化氧化ppb级NO提供了一种极具前景的策略.  相似文献   

12.
Surface oxygen vacancy defects and metal deposition on semiconductor photocatalysts play a critical role in photocatalytic reactions.In this work,oxygen-deficient Bi_2WO_6 microspheres have been prepared by a facile ethylene glycol-assisted solvothermal method.Bi~0 nanoparticles were reduced by in situ thermaltreatment on Bi_2WO_6 microspheres to obtain Bi~0@Bi_2WO_(6-x) as well as maintaining the oxygen vacancies(OVs) under N_2 atmosphere.Afterwards,photocatalytic NO oxidation removal activities of these photocatalysts were investigated under visible light irradiation and Bi~0@Bi_2WO_(6-x) shows the best NO removal activity than other samples.The photogenerated cha rge separation and trans fe r are promoted by Bi~0 nanoparticles deposited on the surface of semiconductor catalysts.OVs defects promote the activation of reactants(H_2 O and O_2),thereby enhancing the formation of the active substance.Moreover,both OVs defects and Bi~0 metal have the characteristics of extending light absorption and enhancing the efficient utilization of solar energy.Besides,the photocatalytic NO oxidation mechanism of Bi~0@Bi_2WO_(6-x)was investigated by in situ FTIR spectroscopy for reaction intermediates and final products.This work furnishes insight into the synthesis strategy and the underlying photocatalytic mecha nism of the surfacemodified Bi~0@Bi_2WO_(6-x) composite for pollutants removal.  相似文献   

13.
V2O5/ACF催化剂低温下选择性催化还原NO的机理   总被引:2,自引:0,他引:2  
将V2O5担载在活性炭纤维(ACF)上制得V2O5/ACF催化剂,并采用暂态响应实验和NH3吸附氧化实验等考察了影响V2O5/ACF催化剂上选择性催化还原(SCR)反应的关键因素.结果表明,NH3在催化剂表面的吸附是必要的,而且该吸附是一个快速过程;气相O2的存在有利于形成催化剂中所需的活性氧化态物种.NH3吸附.脱附与原位质谱相结合的实验表明,V2O5/ACF催化剂具有吸附NH3和将NH3氧化为N2H2的能力,N2H2为NH3氧化的一种中间体.  相似文献   

14.
NOx气相光催化氧化降解研究   总被引:24,自引:0,他引:24  
利用TiO2光催化氧化技术对NOx进行了净化研究,在一定反应条件下,NOx光催化氧化降解率很高,P-25的降解达97%。考察了氧气,水含量等对NOx光催化氧化的影响,同时对NOx的吸附、光催化氧化动力学行为及机理进行了研究。利用FTIR分析确定反应产物,催化剂失活是由于反应产物硝酸吸附在催化剂表面所致。  相似文献   

15.
This study concentrated on the production of a two-dimensional and two-dimensional (2D/2D) Ti3C2/Bi4O5Br2 heterojunction with a large interface that applied as one of the novel visible-light-induced photocatalyst via the hydrothermal method. The obtained photocatalysts enhanced the photocatalytic efficiency of the NO removal. The crystal structure and chemical state of the composites were characterized using X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results showed that Ti3C2, Bi4O5Br2, and Ti3C2/Bi4O5Br2 were successfully synthesized. The experimental results of scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed that the prepared samples had a 2D/2D nanosheet structure and large contact area. This structure facilitated the transfer of electrons and holes. The solar light absorptions of the samples were evaluated using the UV-Vis diffuse reflectance spectra (UV-Vis DRS). It was found that the absorption band of Ti3C2/Bi4O5Br2 was wider than that of Bi4O5Br2. This represents the electrons in the Ti3C2/Bi4O5Br2 nanosheet composites were more likely to be excited. The photocatalytic experiments showed that the 2D/2D Ti3C2/Bi4O5Br2 composite with high photocatalytic activity and stability. The photocatalytic efficiency of pure Bi4O5Br2 for the NO removal was 30.5%, while for the 15%Ti3C2/Bi4O5Br2 it was 57.6%. Moreover, the catalytic reaction happened in a short period. The concentration of NO decreased exponentially in the first 5 min, which approximately reached the final value. Furthermore, the stability of 15%Ti3C2/Bi4O5Br2 was favorable: the catalytic rate was approximately 50.0% after five cycles of cyclic catalysis. Finally, the scavenger experiments, electron spin resonance spectroscopy (ESR), transient photocurrent response, and surface photovoltage spectrum (SPS) were applied to analyze the photocatalytic mechanism of the composite. The results indicated that the 2D/2D heterojunction Ti3C2/Bi4O5Br2 improved the separation rate of the electrons and holes, thus enhancing the photocatalytic efficiency. In the photocatalytic reactions, the photogenerated electrons (e) and superoxide radical (·O2) were critical active groups that had a significant role in the oxidative removal of NO. The in situ Fourier-transform infrared spectroscopy (in situ FTIR) showed that the photo-oxidation products were mainly NO2 and NO3. Based on the above experimental results, a possible photocatalytic mechanism was proposed. The electrons in Bi4O5Br2 were excited by visible light. They jumped from the valence band (VB) of Bi4O5Br2 to the conduction band (CB). Then, the photoelectrons transferred from the CB of Bi4O5Br2 to the Ti3C2 surface, which significantly promoted the separation of the electron-hole pairs. Therefore, the photocatalytic efficiency of Ti3C2/Bi4O5Br2 on NO was significantly improved. This study provided an effective method for preparing 2D/2D Ti3C2/Bi4O5Br2 nanocomposites for the photocatalytic degradation of environmental pollutants, which has great potential in solving energy stress and environmental pollution.  相似文献   

16.
BiOBr因具有合适的能带结构和独特的层状纳米结构而广泛应用于可见光催化领域,但其低的可见光利用率和高的光生电子-空穴对复合率,限制了其实际应用.最近,非整比BiOBr纳米材料表现出了良好的可见光催化性能.本课题组分别采用简易水热法和常温法制备得Bi_(12)O_(17)Br_2和Bi_4O_5Br_2纳米片,并表现出良好的可见光催化性能.然而,对于Bi_(12)O_(17)Br_2和Bi_4O_5Br_2的可见光催化氧化NO的转化路径及反应机理还不清楚.基于此,本文采用射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、紫外-可见漫反射光谱(UV-Vis DRS)、电子自旋共振(ESR)、电子顺磁共振(EPR)和比表面积-孔结构(BET-BJH)等手段研究了Bi_(12)O_(17)Br_2和Bi_4O_5Br_2的理化性能,通过原位红外光谱(in situ DRIFTS)研究了Bi_(12)O_(17)Br_2和Bi_4O_5Br_2的可见光催化氧化NO的转化路径及反应机理.XRD结果表明,在常温碱性环境下,OH~-离子逐步取代BiOBr中的Br-离子制备得单斜晶相Bi_4O_5Br_2;在水热碱性环境下,OH-离子进一步取代Bi_4O_5Br_2中的Br-离子制备得四方晶相Bi_(12)O_(17)Br_2.SEM和TEM结果表明,Bi_(12)O_(17)Br_2是由不规则纳米片堆叠形成的紧密且厚实的层状结构,Bi_4O_5Br_2是由纳米片和纳米颗粒无序堆积形成的多孔疏松结构.BET-BJH测试结果显示,Bi_4O_5Br_2的比表面积和孔容(37.2 m~2/g,0.215 cm~3/g)显著高于Bi_(12)O_(17)Br_2(8.7 m~2/g,0.04 cm~3/g).UV-Vis DRS测试结果显示,Bi_(12)O_(17)Br_2和Bi_4O_5Br_2均显示了良好的可见光吸收能力.可见光催化去除NO的测试结果表明,Bi_4O_5Br_2(41.8%)的光催化活性明显高于Bi_(12)O_(17)Br_2(28.3%).并且,在5次可见光催化循环实验后,Bi_4O_5Br_2(41.1%)表现出良好可见光催化稳定性.ESR测试结果表明,Bi_(12)O_(17)Br_2和Bi_4O_5Br_2参与反应的主要活性物种均为·OH自由基,Bi_4O_5Br_2产生·OH自由基明显强于Bi_(12)O_(17)Br_2.EPR测试结果表明,Bi_4O_5Br_2的氧空位明显多于Bi_(12)O_(17)Br_2,丰富的氧空位更有利于NO的有效吸附.由此可见,Bi_(12)O_(17)Br_2和Bi_4O_5Br_2表现出不同的理化特性.可见光催化氧化NO的原位红外光谱表明,只在Bi_(12)O_(17)Br_2光催化氧化NO的转化路径中会生成中间产物N2O3,表明Bi_(12)O_(17)Br_2和Bi_4O_5Br_2具有不同的NO光催化转化路径.结合上述表征结果认为,Bi_4O_5Br_2比Bi_(12)O_(17)Br_2表现出更优异可见光催化性能的主要原因有以下四个方面为:(1)Bi_4O_5Br_2拥有更高的比表面积和更大的孔容,有利于NO的吸附、反应中间产物的转移和提供更多的活性位点参与光催化反应;(2)Bi_4O_5Br_2可以生成更多的·OH自由基和拥有更强的价带空穴氧化能力;(3)NO中的O原子可以与Bi_4O_5Br_2的氧空位结合,从而提供更多的反应位点;(4)Bi_4O_5Br_2的光催化反应中可以生成中间产物N_2O_3,可以降低NO转化成NO_3~-的反应活化能.  相似文献   

17.
A novel SrSn(OH)6 photocatalyst with large plate and particle size were synthesized via a facile chemical precipitation method.The photocatalytic activity of the SrSn(OH)6 was evaluated by the removal of NO at ppb level under UV light irradiation.Based on the ESR measurements,SrSn(OH)6 photocatalyst was found to have the ability to generate the main active species of O2·-,·OH and 1 O2 during the photocatalyti...  相似文献   

18.
异质结构光催化剂为实现高效的电荷分离,提高光催化性能提供了一种有效的途径.虽然宽禁带和窄禁带光催化剂已经得到了广泛的研究,但它们在接触界面上的电荷分离和转移规律尚未完全揭示.本文采用简便的方法成功地制备了一种新型SrTiO3/BiOI(STB)异质结构光催化剂.该光催化剂中的异质结构可以将光吸收扩展到可见光范围,从而在可见光照射下获得较高的光催化NO去除性能.实验和理论证据表明,BiOI光生电子可以通过预成型的电子传递通道直接转移到SrTiO3表面.XRD和XPS结果表明,SrTO3/BiOI复合材料已成功制备.SEM和TEM图像显示了SrTiO3,BiOI和STB样品的形貌.能量色散X射线(EDX)元素图清楚地表明SrTiO3均匀分布在BiOI纳米片表面,证实BiOI与SrTiO3形成了界面.高分辨率XPS表明,电子从BiOI中Bi和I原子转移到STB化合物中SrTO3的Sr和Ti原子.采用DFT进一步确定了BiOI与SrTiO3相互作用的机制.电子局域函数(ELF)表明,STB的接触界面存在共价相互作用.SrTiO3和BiOI之间生成的共价键导致局域化超额电子(e-ex)的积累.在可见光照射下,界面内的电子交换增强,从而提高反应物活化和ROS生成的效率.采用自制的连续流反应体系,研究了在可见光照射下制备的样品对NO去除的光催化性能.与SrTiO3和BiOI相比,STB具有显著增强的可见光光催化活性,去除率为59.0%.UV-vis DRS显示,STB异质结的光吸收扩展到可见光范围.SrTiO3具有可见光活性,这归因于EPR所描述的氧空位的存在.随后计算态密度(DOS),发现氧空位可以形成缺陷能级,降低激发电子所需的光能.利用ESR光谱发现,STB上的ESR信号强度都要强得多,说明STB异质结具有较好的氧化能力,也说明光生载流子可以通过电子传递通道被有效地分离.原位红外光谱表明,在SrTiO3上,NO主要转化为NO2.STB的加速电荷分离和转移特性,促进活性氧的生成,从而进一步有效地将有毒中间体NO2转化为目标产物.设计并制备的SrTiO3/BiOI异质结光催化剂在可见光辐照下净化空气中NO的效率提高,同时抑制了有毒中间体的生成.通过实验和理论相结合的方法揭示了在两种材料的接触界面上建立的电子传递通道.来自BiOI的光生电子可以通过预先形成的电子传递通道直接转移到SrTiO3表面,从而促进了ROS的生成,所以整体的NO纯化效率和对有毒中间体的抑制作用提高.综上,本文提出了一种简单、新颖的促进空气污染物高效安全净化的策略.  相似文献   

19.
制备了C/CaFe2O4纳米棒复合材料,并考察了其光催化性能,同时深入研究了C修饰对CaFe2O4活性的影响.研究发现,复合材料的光催化降解活性与C和CaFe2O4的质量比密切相关.其最佳的碳含量为58 wt%,所得复合光催化剂对亚甲基蓝(MB)的降解速率常数达到0.0058 min-1,是铁酸钙的4.8倍.进一步研究表明,C修饰在CaFe2O4表面显著提高了样品对亚甲基蓝染料的吸附性能.吸附等温线结果发现,MB以单分子层形式吸附于CaFe2O4表面.总体而言,C覆盖在CaFe2O4表面可以使光生电子和空穴更有效的分离和传输,可以显著提高催化剂对MB的吸附性能,还可以增强样品对光的吸收能力,因而催化剂光催化降解MB性能增加.表征结果表明,复合光催化剂表面含有大量羧基和羟基基团,导致光催化剂表面带负电荷,从而有利于阳离子的MB的静电吸附.为了进一步验证该吸附机理,我们选择了另外两种染料分子,阳离子的罗丹明B和阴离子的甲基橙.结果显示,该光催化剂对罗丹明B同样具有较强的吸附能力和较好的光催化降解活性,但对甲基橙几乎没有吸附和光催化性能.这充分说明亚甲基蓝染料通过静电相互作用的形式吸附于催化剂表面,较好的吸附性能进一步促进了光催化剂的降解活性.为了讨论光催化机理,向反应体系中加入不同的捕获剂来研究光催化反应过程中产生的活性物种.研究显示,羟基自由基在光催化降解亚甲基蓝的反应中几乎没有作用,光生空穴发挥了次要作用,而超氧自由基在整个反应中发挥了主导作用.因此,光催化降解的机理如下:CaFe2O4在可见光激发下产生光生电子和空穴,电子快速转移到C材料的表面并与空气中的氧气反应生成超氧自由基,后者再与吸附在光催化剂表面的染料分子反应产生低毒或无毒的降解产物.此外,CaFe2O4价带上产生的空穴也可以直接将染料分子氧化成小分子产物.  相似文献   

20.
The reactive uptake coefficients (γ) of O(3), NO(2), N(2)O(5), and NO(3) by levoglucosan, abietic acid, nitroguaiacol, and an atmospherically relevant mixture of those species serving as surrogates for biomass burning aerosol have been determined employing a chemical ionization mass spectrometer coupled to a rotating-wall flow-tube reactor. γ of O(3), NO(2), N(2)O(5), and NO(3) in the presence of O(2) are in the range of 1-8 × 10(-5), <10(-6)-5 × 10(-5), 4-6 × 10(-5), and 1-26 × 10(-3), respectively, for the investigated organic substrates. Within experimental uncertainties the uptake of NO(3) was not sensitive to relative humidity levels of 30 and 60%. NO(3) uptake experiments involving substrates of levoglucosan, abietic acid, and the mixture exhibit an initial strong uptake of NO(3) followed by NO(3) gas-phase recovery as a function of NO(3) exposure. In contrast, the uptake of NO(3) by nitroguaiacol continuously proceeds at the same efficiency for investigated NO(3) exposures. The derived oxidative power, i.e. the product of γ and atmospheric oxidant concentration, for applied oxidants is similar or significantly larger in magnitude than for OH, emphasizing the potential importance of these oxidants for particle oxidation. Estimated atmospheric lifetimes for the topmost organic layer with respect to O(3), NO(2), N(2)O(5), and NO(3) oxidation for typical polluted conditions range between 1-112 min, indicating the potential for significant chemical transformation during atmospheric transport. The contact angles determined prior to, and after heterogeneous oxidation by NO(3), representative of 50 ppt for 1 day, do not decrease and thus do not indicate a significant increase in hygroscopicity with potential impacts on water uptake and cloud formation processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号