共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Total Synthesis of Decarboxybetalaines by Photochemical Ring Opening of 3-(4-Pyridyl)alanine A photochemical approach is presented for the total synthesis of the decarboxybetalaines, which were previously known from the mild decarboxylation of the natural plant colorants, the betalaines: Irradiation of rac-3-(4-pyridyl)alanine ( 1 ) yielded the rac-2-decarboxybetalamic-acid-imine ( 4 , 86%), presumably via a Dewar pyridine 2 , a cyclic aminal 3 and an electrocyclic ring opening. The imine-zwitterion 4 was treated with three amines, namely (S)-cyclodopa ( 6 ), (S)-proline ( 7 ), and indoline ( 8 ), to afford three decarboxybetalaines, namely (2S)-17-decarboxybetanidine ( 9 , red, 34%), (2S)-13-decarboxyindicaxanthine ( 10 , yellow, 56%), and rac-16-decarboxyindobetalaine ( 11 , orange, 78%), respectively. The structures of these coloring matters were confirmed by their electrophoretic behavior and their spectroscopic properties. 17-Decarboxybetanidine 9 was shown to be a ca. 1:1 mixture of two C(15)-epimers 9a and 9b , separable by chromatography. The configuration of 9a was determined as (2S, 15S) and that of 9b as (2S, 15R), by correlating their optical rotations with those of betanidine ( 12a ) and isobetanidine ( 12b ), respectively. The decarboxybetalaines 9 , 10 , and 11 did not show the double-bond isomerism at C(β), (Cγ) of the chromophore which had been found characteristic for the corresponding betalaines 12 , 13 , and 14 . 相似文献
3.
From a Base Catalyzed Ring Opening of 2H-Azirines to an α-Alkylation Method of Primary Amines It is shown that fluorene-9′-spiro-2-(3-phenyl-2H-azirine) ( 1 ) on treatment with various alcohols in the presence of the corresponding alkoxide ions yields N-(9′-fluorenyl)benzimidates 2a-d (Scheme 1). 2,2,3-Triphenyl-2H-azirine ( 3 ) reacts with methanol in a similar manner (Scheme 2). Benzimidates 2a (Scheme 3), 8 (Scheme 4) and and 10 (Scheme 5) can easily be deprotonated by butyllithium (BuLi) or lithium diisopropylamide (LDA) in tetrahydrofuran (THF) to 1-methoxy-2-aza-allylanions, that can be alkylated, at C(3), exclusively, by various electrophiles (e.g. R-X(X = I, Br), RCHO or methyl acrylate (see also Scheme 6)). As the acidic hydrolyses (1N HCl) of benzimidates 9 and 11 leads to the corresponding α-alkylated free amines 15 and 18 (Scheme 7 and 8), benzoyl derivatives 16 and 19 are obtained from the hydrolysis under basic conditions. On the other hand, it is observed that a catalyzed Chapman rearrangement of 9 and 11 results in the formation of N-benzoyl-N-methyl derivatives 17 and 20 (Scheme 7 and 8). The described reactions offer a simple method for the α-alkylation of activated primary amines. 相似文献
4.
5-(α-Fluorovinyl)tryptamines 4a, 4b and 5-(α-fluorovinyl)-3-(N-methyl-1′,2′,5′,6′-tetrahydropyridin-3′- and -4′-yl) indoles 5a, 5b were synthesized using 5-(α-fluorovinyl)indole ( 7 ). The target compounds are bioisosteres of 5-carboxyamido substituted tryptamines and their tetrahydropyridyl analogs. 相似文献
5.
6.
7.
8.
9.
10.
11.
12.
Nucleophilic Ring Opening of Aryl α-Nitrocyclopropanecarboxylates with Sterically Protected but Electronically Effective Carbonyl and Nitro Group. A New Principle of α-Amino Acid Synthesis (2-Aminobutanoic Acid a4-Synthon) The readily available 2,4,6-tri(tert-butyl)-and 2,6-di(tert-butyl)-4-methoxypahenol esters 2 of α-nitrocyclo-propanecarboxaylic acid ring opening with C-, N-, O-, and S-nucleophiles (cyanide, malonate, azide, anilines, alkoxides, phenoxides, thiolates) in DMF or alcohol solvents (80–95% yield). The products 6 – 14 are 2-nitrobutanoates with the newly introduced substituent in the 4-position. Reduction of the NO2 group with Zn/AcOH/Ac2O gives N-acetyl-α-amino acid esters 16 – 22 (40–90% yield). Subsequent oxidative cleavage (H2O2/HCOOH) of The p-methoxy-phenyl esters 18 and 20 produces free amino acids (65% 23 and 67% 24 , respectively). Thus, the nitro ester 2 corresponds to a 2-aminobutanoic-acid a4-synthon, it is a ‘homo-Michael acceptor’ producing γ-substituted α-amino acids. 相似文献
13.
14.
15.
16.
17.
18.
Synthesis of Diastereo- and Enantioselectively Deuterated β,ε-, β,β-, β,γ- and γ,γ-Carotenes We describe the synthesis of (1′R, 6′S)-[16′, 16′, 16′-2H3]-β, εcarotene, (1R, 1′R)-[16, 16, 16, 16′, 16′, 16′-2H6]-β, β-carotene, (1′R, 6′S)-[16′, 16′, 16′-2H3]-γ, γ-carotene and (1R, 1′R, 6S, 6′S)-[16, 16, 16, 16′, 16′, 16′-2H6]-γ, γ-carotene by a multistep degradation of (4R, 5S, 10S)-[18, 18, 18-2H3]-didehydroabietane to optically active deuterated β-, ε- and γ-C11-endgroups and subsequent building up according to schemes \documentclass{article}\pagestyle{empty}\begin{document}${\rm C}_{11} \to {\rm C}_{14}^{C_{\mathop {26}\limits_ \to }} \to {\rm C}_{40} $\end{document} and C11 → C14; C14+C12+C14→C40. NMR.- and chiroptical data allow the identification of the geminal methyl groups in all these compounds. The optical activity of all-(E)-[2H6]-β,β-carotene, which is solely due to the isotopically different substituent not directly attached to the chiral centres, is demonstrated by a significant CD.-effect at low temperature. Therefore, if an enzymatic cyclization of [17, 17, 17, 17′, 17′, 17′-2H6]lycopine can be achieved, the steric course of the cyclization step would be derivable from NMR.- and CD.-spectra with very small samples of the isolated cyclic carotenes. A general scheme for the possible course of the cyclization steps is presented. 相似文献
19.