共查询到20条相似文献,搜索用时 62 毫秒
1.
We investigate the effective interaction between two heavy impurities immersed in a quasi-twodimensional dipolar Bose-Einstein condensate via a variation approach. We show that the mediated interaction is highly tunable via the contact and the dipole-dipole interactions between the background gas atoms. Interestingly, the mediated interaction potential may become an oscillating function of inter-impurity distance when roton excitation emerges under sufficiently strong dipolar interaction. Our system therefore provides an efficient way for tuning the mediated interaction between impurities. 相似文献
2.
V. P. Ruban 《JETP Letters》2017,105(7):458-463
The dynamics of interacting quantum vortices in a quasi-two-dimensional spatially inhomogeneous Bose–Einstein condensate, whose equilibrium density vanishes at two points of the plane with a possible presence of an immobile vortex with a few circulation quanta at each point, has been considered in a hydrodynamic approximation. A special class of density profiles has been chosen, so that it proves possible to calculate analytically the velocity field produced by point vortices. The equations of motion have been given in a noncanonical Hamiltonian form. The theory has been generalized to the case where the condensate forms a curved quasi-two-dimensional shell in the three-dimensional space. 相似文献
3.
4.
5.
J. Stenger S. Inouye D.M. Stamper-Kurn A.P. Chikkatur D.E. Pritchard W. Ketterle 《Applied physics. B, Lasers and optics》1999,69(5-6):347-352
Two sets of studies concerning the interaction of off-resonant light with a sodium Bose–Einstein condensate are described.
In the first set, properties of a Bose–Einstein condensate were studied using Bragg spectroscopy. The high momentum and energy
resolution of this method allowed a spectroscopic measurement of the mean-field energy and of the intrinsic momentum distribution
of the condensate. Depending on the momentum transfer, both the phonon regime as well as the free-particle regime could be
explored. In the second set of studies, the cigar-shaped condensate was exposed to a single off-resonant laser beam and highly
directional scattering of light and atoms was observed. This collective light scattering was caused by the long coherence
time of the quasi-particles in the condensate and resulted in a new form of matter wave amplification.
Received: 26 June 1999 / Revised version: 21 September 1999 / Published online: 10 November 1999 相似文献
6.
《中国物理 B》2019,(6)
We investigate domain wall excitations in a two-component Bose–Einstein condensate with two-body interactions and pair-transition effects. It is shown that domain wall excitations can be described exactly by kink and anti-kink excitations in each component. The domain wall solutions are given analytically, which exist with different conditions compared with the domain wall reported before. Bubble-droplet structure can be also obtained from the fundamental domain wall, and their interactions are investigated analytically. Especially, domain wall interactions demonstrate some striking particle transition dynamics. These striking transition effects make the domain wall admit quite different collision behavior, in contrast to the collision between solitons or other nonlinear waves. The collisions between kinks induce some phase shift, which makes the domain wall change greatly. Their collisions can be elastic or inelastic with proper combination of fundamental domain walls. These characters can be used to manipulate one domain wall by interacting with other ones. 相似文献
7.
Xiao-Fei Zhang Zhi-Jing Du Ren-Bing Tan Rui-Fang Dong Hong Chang Shou-Gang Zhang 《Annals of Physics》2014
We consider a pair of coupled nonlinear Schrödinger equations modeling a rotating two-component Bose–Einstein condensate with tunable interactions and harmonic potential, with emphasis on the structure of vortex states by varying the strength of inter-component interaction, rotational frequency, and the aspect ratio of the harmonic potential. Our results show that the inter-component interaction greatly enhances the effect of rotation. For the case of isotropic harmonic potential and small inter-component interaction, the initial vortex structure remains unchanged. As the ratio of inter- to intra-component interactions increases, each component undergoes a transition from a vortex lattice (vortex line) in an isotropic (anisotropic) harmonic potential to an alternatively arranged stripe pattern, and eventually to the interwoven “serpentine” vortex sheets. Moreover, in the case of anisotropic harmonic potential the system can develop to a rotating droplet structure. 相似文献
8.
S. Ritter F. Brennecke K. Baumann T. Donner C. Guerlin T. Esslinger 《Applied physics. B, Lasers and optics》2009,95(2):213-218
A Bose–Einstein condensate is dispersively coupled to a single mode of an ultra-high finesse optical cavity. The system is
governed by strong interactions between the atomic motion and the light field even at the level of single quanta. While coherently
pumping the cavity mode the condensate is subject to the cavity optical lattice potential whose depth depends nonlinearly
on the atomic density distribution. We observe optical bistability already below the single photon level and strong back-action
dynamics which tunes the coupled system periodically out of resonance. 相似文献
9.
J. Kobayashi Y. Izumi K. Enomoto M. Kumakura Y. Takahashi 《Applied physics. B, Lasers and optics》2009,95(1):37-42
We have performed two-photon photoassociation experiments in atomic Bose–Einstein condensate (BEC) of 87Rb with spin degree of freedom which is created by all-optical method with CO2 lasers. The spinor character of the molecules has been revealed by the photoassociation spectrum with a new structure. The
hyperfine structure of the molecules near the dissociation limit is identified by observations of the Zeeman and AC-Stark
effects of the molecules. The molecules have been spin-selectively probed by the use of the light shift. This result would
open the new possibility of research on novel spinor molecular BEC. 相似文献
10.
We study the spatial structure of a Bose–Einstein condensate(BEC) with a space-dependent s-wave scattering length in a combined trap. There exists a space-dependent nonlinear atomic current in the system. The atomic current has an important influence on the spatial structure of the BEC. Research findings reveal that a large chemical potential can effectively suppress the chaotic spatial structure in the BEC system. Due to the large chemical potential, a strong atomic current is necessary to make... 相似文献
11.
We study the quantum dynamics of an impurity-doped Bose–Einstein condensate (BEC) system. We show how to generate the macroscopic quantum superposition states (MQSSs) of the BEC by the use of projective measurements on impurity atoms. It is found that the nonclassicality of MQSSs can be manipulated by changing the number of the impurities and their interaction with the BEC. It is shown that the BEC matter-wave field exhibits a collapse and revival phenomenon which reveals the quantum nature of the BEC matter-wave field. We investigate the micro-macro entanglement between the impurities and the BEC, and find enhancement of the micro-macro entanglement induced by the initial quantum coherence of the impurity atoms. 相似文献
12.
We develop a variational theory for a dipolar condensate in an elongated(cigar shaped)confinement potential. Our formulation provides an effective one-dimensional extended meanfield theory for the ground state and its collective excitations. We apply our theory to investigate the properties of rotons in the system comparing the variational treatment to a full numerical solution. We consider the effect of quantum fluctuations on the scattering length at which the roton excitation softens to zero energy. 相似文献
13.
We investigate kink-dark complex solitons(KDCSs) in a three-component Bose–Einstein condensate(BEC) with repulsive interactions and pair-transition(PT) effects. Soliton profiles critically depend on the phase differences between dark solitons excitation elements. We report a type of kink-dark soliton profile which shows a droplet-bubble-droplet with a density dip, in sharp contrast to previously studied bubble-droplets. The interaction between two KDCSs is further investigated. It demonstrates some striking particle transition behaviours during their collision processes, while soliton profiles survive after the collision. Additionally, we exhibit the state transition dynamics between a kink soliton and a dark soliton. These results suggest that PT effects can induce more abundant complex solitons dynamics in multi-component BEC. 相似文献
14.
We study the ground-state phases of two-dimensional rotating spin–orbit coupled spin-1/2 Bose–Einstein condensates (BECs) in a gradient magnetic field. The competition between gradient magnetic field, spin–orbit coupling and rotation leads to a variety of ground-state phase structures. In the weakly rotation regime, as the increase of gradient magnetic field strength, the BECs experiences a phase transition from the unstable phase to the single vortex-line phase. The unstable phase presents the vortex lines structures along the off-diagonal direction. With magnetic field gradient strength increasing, the number of vortex lines changes accordingly. As the magnetic field gradient strength increases further, the single vortex-line phase with a single vortex line along the diagonal direction is formed. The phase diagram shows that the boundary between the two phases is linear with the relative repulsion λ≥1 and is nonlinear with λ<1. In the relatively strong rotation regime, in addition to the unstable phase and the single vortex-line phase, the vortex-ring phase is formed for the strong magnetic field gradient and rapid rotation. The vortex-ring phase shows the giant and hidden vortex structures at the center of ring. The strong magnetic field gradient makes the number of the vortices around the ring unchanged. 相似文献
15.
We consider an effective two-dimensional Bose–Einstein condensate with some spin–orbit coupling (SOC) and a rotation term in an external harmonic potential. We find the striped state, and analyze the effects of SOC, the external potential, and the rotation frequency/direction on the profile and the stability of the striped state. Without the rotation term, the two spinor components exhibit striped pattern, and the numbers of stripes in the two components are always an odd–even or an even–odd. With the increase of the SOC strength, the number of stripes in both components increases, while the difference of the striped numbers is always one. After adding the rotation term, the profiles of the spinor components change qualitatively, and the change regulation of the striped numbers differs, while the difference of the striped numbers is still one. In addition, we find that the rotation direction only makes the striped state of the two spinor components exchange each other, though the clockwise and counterclockwise rotation directions are inequivalent with the presence of SOC. Such regulation is different from the previous study. And the rotation frequency gives rise to the transition from the striped state to a mixture of the striped state and vortex state. Furthermore, we prove the stability of these states by the evolution and linear stability analysis. 相似文献
16.
Yongping Zhang Maren Elizabeth Mossman Thomas Busch Peter Engels Chuanwei Zhang 《Frontiers of Physics》2016,11(3):118103
The experimental and theoretical research of spin–orbit-coupled ultracold atomic gases has advanced and expanded rapidly in recent years. Here, we review some of the progress that either was pioneered by our own work, has helped to lay the foundation, or has developed new and relevant techniques. After examining the experimental accessibility of all relevant spin–orbit coupling parameters, we discuss the fundamental properties and general applications of spin–orbit-coupled Bose–Einstein condensates (BECs) over a wide range of physical situations. For the harmonically trapped case, we show that the ground state phase transition is a Dicke-type process and that spin–orbit-coupled BECs provide a unique platform to simulate and study the Dicke model and Dicke phase transitions. For a homogeneous BEC, we discuss the collective excitations, which have been observed experimentally using Bragg spectroscopy. They feature a roton-like minimum, the softening of which provides a potential mechanism to understand the ground state phase transition. On the other hand, if the collective dynamics are excited by a sudden quenching of the spin–orbit coupling parameters, we show that the resulting collective dynamics can be related to the famous Zitterbewegung in the relativistic realm. Finally, we discuss the case of a BEC loaded into a periodic optical potential. Here, the spin–orbit coupling generates isolated flat bands within the lowest Bloch bands whereas the nonlinearity of the system leads to dynamical instabilities of these Bloch waves. The experimental verification of this instability illustrates the lack of Galilean invariance in the system. 相似文献
17.
We investigate the topological excitations of rotating spin-1 ferromagnetic Bose–Einstein condensates with spin–orbit coupling (SOC) in an in-plane quadrupole field. Such a system sustains a rich variety of exotic vortex structures due to the spinor order parameter and the interplay among in-plane quadrupole field, SOC, rotation, and interatomic interaction. For the nonrotating case, with the increase of the quadrupole field strength, the system experiences a transition from a coreless polar-core vortex with a bright soliton to a singular polar-core vortex with a density hole. Without rotation but with a fixed quadrupole field, when the SOC strength increases, the system transforms from a central Mermin–Ho vortex into a criss-crossed vortex–antivortex string lattice. For the rotating case, we give a phase diagram with respect to the quadrupole field strength and the SOC strength. It is shown that the rotating system supports four typical quantum phases: vortex necklace, diagonal vortex chain cluster, single diagonal vortex chain, and few vortex states. Furthermore, the system favors novel spin textures and skyrmion excitations including an antiskyrmion, a criss-crossed half-skyrmion–half-antiskyrmion lattice, a skyrmion-meron necklace, a symmetric half-skyrmion lattice, and an asymmetric skyrmion-meron lattice. 相似文献
18.
We study the collapse dynamics of a Bose–Einstein condensate subjected to a sudden change of the scattering length to a negative value by adopting the self-consistent Gaussian state theory for mixed states. Compared to the Gross–Pitaevskii and the Hartree–Fock–Bogoliubov approaches, both fluctuations and three-body loss are properly treated in our theory. We find a new type of collapse assisted by fluctuations that amplify the attractive interaction between atoms. Moreover, the calculation of the fluctuated atoms, the entropy, and the second-order correlation function showed that the collapsed gas significantly deviated from a pure state. 相似文献
19.
We study solitons in a spin-1 Bose–Einstein condensates with SU(3) spin–orbit coupling. We obtain the ground state and the metastable solution for solitons with attractive interactions by the imaginary-time evolution method. Compared with the SU(2) spin–orbit coupling, it is found that the solitons in SU(3) spin–orbit coupling show a new feature due to breaking the symmetry. The solitons called the composite solitons have mixing manifolds of ferromagnetic and antiferromagnetic states. This has stimulated people to study the topological excitation properties of SU(3) spin–orbit coupling and it is expected to find new quantum phases. 相似文献
20.
Transfer of entangled state, entanglement swapping and quantum information processing via the Rydberg blockade
下载免费PDF全文

We provide a scheme with which the transfer of the entangled state and the entanglement swapping can be realized in a system of neutral atoms via the Rydberg blockade. Our idea can be extended to teleport an unknown atomic state. According to the latest theoretical research of the Rydberg excitation and experimental reports of the Rydberg blockade effect in quantum information processing, we discuss the experimental feasibility of our scheme. 相似文献