首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The photochemistry of ortho, meta and para-carboxypyridines (pK(a)(1)= 1.0-2.1 and pK(a)(2)= 4.7-5.3) in aqueous medium was studied by laser-flash photolysis and product studies. At pH < pK(a)(1), hydroxylated compounds are produced with low quantum yields. Within the pH range 4-7, ortho and meta isomers undergo dimerization together with decarboxylation with a quantum yield showing a very sharp maximum around pK(a)(2)([small phi](max)= 0.09 and 0.01, respectively) while the para isomer is photostable. End-of-pulse transients assigned to triplet states were detected by laser-flash photolysis at pH < pK(a)(1) and pH > 4. Additionally, the carboxypyridinyl radicals were detected as secondary intermediates at pH < pK(a)(1) and 4 < pH < 7 and the OH-adduct radicals at pH < pK(a)(1). This is in favour of an electron transfer reaction between triplet and starting compound producing a charge transfer species. The radical anion would escape as carboxypyridinyl radical while the radical cation may add water at pH < pK(a)(1) yielding the OH-adduct radical or may undergo decarboxylation at pH > 4. The high quantum yield of phototransformation of the ortho isomer at pH > 4 is due to an easy decarboxylation process. A reaction scheme is proposed accounting for the dependences of [small phi] on both the pH and the carboxypyridines concentration. This study points out the distinct pattern of reactivity of carboxypyridines depending on the ionisation state of starting compounds and isomeric substitution.  相似文献   

2.
We have investigated the photosensitized monomerization of the cis,syn -cyclobutane dimer of 1,3-di-methylthymine using riboflavin tetraacetate and a 5-deazaflavin derivative as photosensitizer. Although little monomerization of the dimer is induced by photoexcitation of the flavins in the absence of any additives, the flavins can function as an efficient photosensitizer in the presence of magnesium perchlorate. Mechanistic studies involving spectroscopic, quantum-yield and flash-photolysis measurements demonstrated that the photosensitized monomerization exclusively proceeds through electron transfer from the dimer to the triplet flavins complexed with Mg2+. The effects of magnesium perchlorate are compared with those on the chloranil-photosensitized monomerization and also with the effects of HClO4 on the flavin-photosensitized reaction.  相似文献   

3.
A series of photo-CIDNP (chemically induced dynamic nuclear polarization) experiments were performed on pyrimidine monomers and dimers, using the electron-donor Nα-acetyltryptophan (AcTrp) as a photosensitizer. The CIDNP spectra give evidence for the existence of both the dimer radical anion, which is formed by electron transfer from the excited AcTrp* to the dimer, and its dissociation product, the monomer radical anion. The AcTrp spectra are completely different from those obtained with an oxidizing sensitizer like anthraquinone-2-sulfonate, because of different unpaired electron spin density distributions in pyrimidine radical anion and cation. In the spectra of the anti (1,3-dimethyluracil) dimers, polarization is detected that originates from a spin-sorting process in the dimer radical pair, pointing to a relatively long lifetime of the dimer radical anions involved. Although the dimer radical anions of the 1,1′-trimethylene-bridged pyrimidines may have a relatively long lifetime as well, their protons have only very weak hyperfine interaction, which explains why no polarization originating from the dimer radical pair is detected. In the spectra of the bridged pyrimidines, polarized dimer protons are observed as a result of spin sorting in the monomer radical pair, from which it follows that the dissociation of dimer radical anion into monomer radical anion is reversible. A study of CIDNP intensities as a function of pH shows that a pH between 3 and 4 is optimal for observing monomer polarization that originates from spin-sorting in the monomer radical pair. At higher pH the geminate recombination polarization is partly cancelled by escape polarization arising in the same product.  相似文献   

4.
Abstract Redox photosensitization using the phenanthrene-p-dicyanobenzene pair in acetonitrile has been applied to the respective four isomeric dimers of N.N′-dimethylthymine (DMT) and N,N′-dimethyluracil (DMU) as well as to several related cyclobutane compounds. The head-to-head (syn) dimers of both DMT and DMU can undergo photosensitized splitting in the following order of efficiency: cis, syn dimer of DMT > cis, syn dimer of DMU > trans, syn dimer of DMT. On the other hand, the head-to-tail (anti) dimers are totally unreactive and have higher oxidation potentials than the corresponding syn dimers. It is suggested that the key mechanistic pathway is the formation of π complexes between the dimers and the photo-generated cation radical of phenanthrene by way of which splitting of the cyclobutane ring catalytically occurs without the formation of the discrete cation radical of the dimers. Structure-reactivity relationships are interpreted in terms of through-bond interactions between the n orbitals of N(l) and N(l′) involving the C(6)-C(6′) bond, as well as in terms of steric repulsion. It was found that aeration of solution greatly enhances the quantum yields of photosensitized splitting; the limiting quantum yield for splitting of the cis, syn dimer of DMT is 100.  相似文献   

5.
The photolysis of (R)-(+)-phenyl and (R)-(+)-p-anisyl 1, 2, 3-trimethylcyclopent-2-enyl ketone ( 1 , 2 ) and the corresponding rac-1- and 3-desmethyl analogs ( 3 , 4 ) led to isomerization due to formal 1, 3 aroyl migration and to formation of aryl aldehydes ( 7 , 8 ), dienes ( 9 , 10 ) and dimers ( 5 , 6 ) of the cyclopentenyl radical. Evidence obtained from a chiroptical and mass spectrometric analysis of a crossing experiment and from photolytic CIDNP measurements including the use of CCl4 as a free radical scavenger, supports the conclusion (1): that the ketones undergo photochemical α-cleavage predominantly in the triplet state; (2): that recombination and disproportionation reactions within the geminate singlet and triplet aroyl/allyl radical pairs ( 11 ) compete with the dissociation into free radicals ( 12 ): (3): that ketone isomerization by paths not involving polarizable radical intermediates is unimportant; (4): that no triplet oxa-di-π-methane type rearrangement products are formed.  相似文献   

6.
The reactions of carbon centered radical pairs often involve diffusion controlled combination and/or disproportionation reactions which are non-selective. A triplet geminate pair of radicals is produced by the photolysis of suitable ketones. The reactions of such geminate pairs can be controlled though the application of supramolecular concepts which emphasize non-covalent interaction to "steer" the geminate pair toward a selected pathway. In addition, "superdupermolecular" concepts, which emphasize the control of radical pair reactions through the orientation of electron spins, can be employed to further control the course of geminate pair reactions. Examples of control of a range of the selectivity of geminate radical combinations, which form strong covalent bonds, through supramolecular and superdupermolecular effects will be presented for the photolysis of ketones adsorbed in the supercages of zeolites.  相似文献   

7.
Photosensitized splitting of cis-syn- and trans-syn-l,3-dimethyluracil dimers by 2′,3′,4′,5′-tetraacetylri-boflavin in acetonitrile containing a trace of perchloric acid was studied by laser flash photolysis. Protonation of the flavin prior to excitation resulted in excited singlet and triplet states that abstracted an electron from the dimers and yielded the protonated flavin radical (F1H2+), which was detected by absorption spectroscopy. Electron abstraction by the excited singlet state predominated over abstraction by the triplet state. Approximately one-third to one-half of the excited states quenched by the trans-syn dimer yielded F1H2+, the balance presumably undergoing back electron transfer within the geminate radical ion pair generated by the initial electron transfer. A covalently linked dimer-flavin exhibited very inefficient flavin radical ion formation, consistent with the known low efficiency of dimer splitting in this system. These results constitute the first identification of a flavin radical ion intermediate in photosensitized pyrimidine dimer splitting.  相似文献   

8.
The singlet and triplet states of the anthralin (1,8-dihydroxy-9-anthrone) dehydrodimer have been produced selectively in benzene via pulsed laser excitation and pulse radiolysis respectively. The lifetime of S1 is less than or equal to 30 ps, that of T1 short but unspecified. Both states fragment spontaneously to yield a pair of anthralin radicals. The singlet radical pair predominantly undergoes geminate recombination within the solvent cage. In contrast, the corresponding triplet radical pair undergoes essentially exclusive cage escape to give the anthralin free radical (lambda max 370, 490 and 720 nm) which recombines under normal diffusive conditions. Both recombination processes lead, at least in part, to one or more species which have been assigned as tautomeric forms of the original dimer. The anthralin free radical in benzene is insensitive to the vitamin E model 6-hydroxy-2,2,5,7,8-pentamethylchroman and reacts only slowly with oxygen.  相似文献   

9.
Direct excitation of acenaphthylene molecules included in a syn fashion within the octa acid nanocapsule dimerizes quantitatively to a syn dimer, and upon triplet sensitization, yields both syn and anti dimers probably by reacting within and outside the capsule.  相似文献   

10.
The diastereomers of ketones 2 and 3 are shown to exhibit distinct photochemical reactivities due to conformational preferences; while the anti isomers of 2 and 3 undergo efficient Yang cyclization in 75-90% yields with a remarkable diastereoselectivity (> 90%), the syn isomers predominantly undergo Norrish Type II elimination. The differences in the product profiles of the diastereomers are consistent with a mechanistic picture involving the formation of precursor diastereomeric triplet 1,4-biradicals in which the substituents at alpha and beta-positions stabilize the cisoid (cyclization) or transoid (elimination) geometry. The fact that such a diastereomeric relationship does indeed ensue at the triplet-excited-state itself is demonstrated via the nanosecond laser-flash photolysis of model ketones 1. The diastereomeric discrimination in the product profiles observed for ketones 2 and 3 as well as in the triplet lifetimes observed for ketones 1 can both be mechanistically traced back to different conformational preferences of the ground-state diastereomeric ketones and the intermediary 1,4-biradicals. Additionally, it emerges from the present study that the syn and anti diastereomers of ketones 2 and 3 represent two extremes of a broad range of widely examined butyrophenones, which lead to varying degrees of Yang photocyclization depending on the alkyl substitution pattern.  相似文献   

11.
Anthraquinone-2-sulfonate (AQS) photosensitizes pyrimidine dimer splitting. Electron abstraction from the dimer is thought to induce dimer splitting, but direct evidence for the existence and intermediacy of dimer radical cations has been lacking. By employing photochemically induced dynamic nuclear polarization, we have found emission signals in the NMR spectra of dimers upon photolysis of dimers in the presence of anthraquinone-2-sulfonate. The two dimers employed were cis, syn-thymine dimer in which the N(1)-positions were linked by a three-carbon bridge and the N(3), N(3')-dimethyl derivative of that compound. The anthraquinone-2-sulfonate sensitized photochemically induced dynamic nuclear polarization spectrum of the methylated derivative exhibited an emission signal from the dimer-C(6) hydrogens. This result implied the existence of a dimer radical cation (mD+.) formed by electron abstraction by excited anthraquinone-2-sulfonate and nuclear spin sorting within a solvent caged radical ion pair [mD+. AQS-.]. Product pyrimidine photochemically induced dynamic nuclear polarization signals were also seen [enhanced absorption by C(6)-hydrogens and emission by C(5)-methyl groups]. Nuclear spin polarization in the product resulted from spin sorting in one or more of its precursors, including mD+. The results support the conclusion that dimer radical cations not only exist but are intermediates in the photosensitized splitting of pyrimidine dimers by anthraquinonesulfonate.  相似文献   

12.
The role of hopping on the geminate recombination of radical ions (N,N-dimethylaniline cation and anthracene anion) in acetonitrile is studied via the nanosecond time-resolved magnetic field effect on the triplet yield and the influence of donor concentration thereon. Increasing donor concentration leads to lifetime broadening of the magnetic field dependence of the triplet yield. Responsible for this effect is the perturbation of the coherent spin motion caused by hopping of the electron spin between donor sites of different nuclear spin configuration. Comparison of experimental results with calculations based on the semiclassical theory of spin motion yields an estimate of the hopping rates. Deuteration of both radicals influences the halfwidth of the magnetic field effect: at long probing times and low donor concentrations the halfwidth measured for protonated radical ions exceeds the one for the deuterated species: at short delay times and large donor concentrations, i.e. high hopping rates, this isotopic effect is reversed.  相似文献   

13.
Synthesis of a dendritic (soluble) hexanaphthylbenzene derivative is described in which the six naphthyl groups are connected to the central benzene ring in a propeller-shaped arrangement. Observation of multiple oxidation waves in its cyclic voltammogram as well as an intense charge-resonance transition (extending beyond 1600 nm) in its cation radical, generated by laser-flash photolysis using photoexcited chloranil as an oxidant, suggests that a single hole is mobilized via electron transfer (or hopping) over six identical (circularly arrayed) redox centers.  相似文献   

14.
Transient ESR spectra are presented of polarized radicals formed following photolysis of quinoxaline, quinoline and pyrazine in solution. Triplet and geminate radical-pair mechanism polarizations are reported and discussed. The phase of the triplet polarization varies with the radical concerned in a manner which confirms the central assumption of the triplet theory.  相似文献   

15.
The light-induced splitting of pyrimidine dimers was studied using the electron acceptor anthraquinone-2-sulfonate (AQS) as a photosensitizer. To this end, photochemically induced dynamic nuclear polarization (photo-CIDNP) experiments were performed on a series of pyrimidine monomers and dimers. The CIDNP spectra demonstrate the existence of both the dimer radical cation, which is formed by electron transfer from the dimer to the photoexcited sensitizer AQS*, and its dissociation product, the monomer radical cation. In spectra of 1,1′-trimethylene bridged cis,syn pyrimidine dimers, polarization is observed that originates from a spin-sorting process in the dimer radical pair. This points to a relatively long lifetime of the dimer radical cation involved, which is presumably due to stabilization by the trimethylene bridge. Polarization originating from a dimer radical pair is detected in the spectrum of trans,anti (1,3-dimethyluracil) dimer as well. The spectra of the bridged pyrimidines also demonstrate the reversibility of the dissociation of dimer radical cation into monomer radical cation, which is concluded from the observation of polarization in the dimer as a result of spin sorting in the monomer radical pair.  相似文献   

16.
The formation and reactivity of the triplet state and free radicals of mefloquine hydrochloride (MQ) have been investigated by pulse radiolysis and flash photolysis. The excited triplet, cation radical and anion radical have been produced and their absorption characteristics determined. The triplet-triplet absorption spectrum of MQ showed a maximum at 430 nm, with a molar absorption coefficient of 3600 M(-1) cm(-1) and the quantum yield for intersystem crossing was determined to be close to unity. Deactivation of the triplet, in the absence of oxygen, led to the formation of MQ cation and/or anion radicals. The molar absorption coefficient of the cation radical at 330 nm was determined to be 2300 M(-1) cm(-1), whilst that for the anion radical was 2400 M(-1) cm(-1) at 620 nm and 3600 M(-1) cm(-1) at 350 nm. The molar absorption coefficients of the proposed neutral radical at 320 nm and 520 nm were 4000 M(-1) cm(-1) and 1300 M(-1) cm(-1) respectively. The quantum yield for the formation of singlet oxygen, sensitized by MQ triplet, was determined to be close to unity. Aqueous solutions of MQ were found to photoionize to yield hydrated electron and cation radical of MQ in a biphotonic process. The influences of pH, buffer concentration, oxygen concentration and addition of sodium azide on the formation and reactivity of the transients were evaluated. The reactions between MQ and solvated electrons and superoxide anion were also studied.  相似文献   

17.
Abstract— Polymeric particles of about 1 u.m in diameter and containing around 40% magnetite have a dramatic influence on the dynamics of triplet radical pair reactions occurring in micelles in their vicinity. The effect has been monitored with laser flash photolysis techniques and results in a decrease of the number of radicals that separate from their geminate partner and an acceleration of radical pair geminate reactions. The effect involves remote interactions because the solution contains ca 1011micelles for each polymeric particle. Magnetite also perturbs the way in which the radicals interact with an external magnetic field.  相似文献   

18.
The flash photolysis of purine in acetonitrile and in water at different pH was studied. The transients produced on flash excitation of degassed aqueous solutions have been identified as the triplet excited state, the hydrated electron, a purine radical cation and radical anion on the basis of quenching experiments and comparison to transients observed in low temperature photolysis.  相似文献   

19.
Photochemical properties of photoinduced omega-bond dissociation in p-benzoylbenzyl phenyl sulfide (BBPS) in solution were investigated by time-resolved EPR and laser flash photolysis techniques. BBPS was shown to undergo photoinduced omega-bond cleavage to yield the p-benzoylbenzyl radical (BBR) and phenyl thiyl radical (PTR) at room temperature. The quantum yield (phi(rad)) for the radical formation was found to depend on the excitation wavelength, i.e., on the excitation to the excited singlet states, S2 and S1 of BBPS; phi(rad)(S2) = 0.65 and phi(rad)(S1) = 1.0. Based on the CIDEP data, these radicals were found to be produced via the triplet state independent of excitation wavelength. By using triplet sensitization of xanthone, the efficiency (alpha(rad)) of the C-S bond fission in the lowest triplet state (T1) of BBPS was determined to be unity. The agreement between phi(rad)(S1) and alpha(rad) values indicates that the C-S bond dissociation occurs in the T1 state via the S1 state due to a fast intersystem crossing from the S1 to the T1 state. In contrast, the wavelength dependence of the radical yields was interpreted in terms of the C-S bond cleavage in the S2 state competing with internal conversion from the S2 to the S1 state. The smaller value of phi(rad)(S2) than that of phi(rad)(S1) was proposed to originate from the geminate recombination of singlet radical pairs produced by the bond dissociation via the S2 state. Considering the electronic character of the excited and dissociative states in BBPS showed a schematic energy diagram for the omega-bond dissociation of BBPS.  相似文献   

20.
Magnetic field effect studies of alkylcobalamin photolysis provide evidence for the formation of a reactive radical pair that is born in the singlet spin state. The radical pair recombination process that is responsible for the magnetic field dependence of the continuous-wave (CW) quantum yield is limited to the diffusive radical pair. Although the geminate radical pair of adenosylcob(III)alamin also undergoes magnetic field dependent recombination (A. M. Chagovetz and C. B. Grissom, J. Am. Chem. Soc. 115, 12152–12157, 1993), this process does not account for the magnetic field dependence of the CW quantum yield that is only observed in viscous solvents. Glycerol and ethylene glycol increase the microviscosity of the solution and thereby increase the lifetime of the spin-correlated diffusive radical pair. This enables magnetic field dependent recombination among spin-correlated diffusive radical pairs in the solvent cage. Magnetic field dependent recombination is not observed in the presence of nonviscosigenic alcohols such as isopropanol, thereby indicating the importance of the increased microviscosity of the medium. Paramagnetic radical scavengers that trap alkyl radicals that escape the solvent cage do not diminish the magnetic field effect on the CW quantum yield, thereby ruling out radical pair recombination among randomly diffusing radical pairs, as well as excluding the involvement of solvent-derived radicals. Magnetic field dependent recombination among alkylcobalamin radical pairs has been simulated by a semiclassical model of radical pair dynamics and recombination. These calculations support the existence of a singlet radical pair precursor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号