首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Tetrahedron: Asymmetry》2006,17(8):1264-1274
In a previous work, several 2-phenylcycloalkanamines were subjected to aminolysis catalysed by the lipase B from Candida antarctica (CAL-B). In these processes, the size of the cycle and the stereochemistry of the stereogenic centres of the amines had a strong influence on both the enantiomeric ratio and the reaction rate. Herein, molecular modelling approaches have been used to revise the lipase-catalysed aminolysis mechanism. Thus, complexes of CAL-B with the phosphonamidate analogues related to substrates in the kinetic resolution of several 2-phenylcycloalkanamines by this enzyme were built and minimised. This computational study suggests the formation of zwitterionic species (named TI-Z), resulting from the direct His-unassisted attack of the amine onto the carbonyl group of the acyl-enzyme, as the most plausible intermediate for the CAL-B-catalysed aminolysis. This proposal differs slightly from the commonly accepted serine-mediated mechanism, where removal of the proton from the amine occurs simultaneously to the nucleophile attack to the acyl-enzyme complex (TI-2). Subsequently, His-assisted deprotonation of the resulting ammonium group takes place, and a molecule of water could be necessary in some cases to facilitate the transfer of the proton to the catalytic histidine.  相似文献   

2.
The aminolysis of 6-chloropyrimidine and 2-amino-6-chloropyrimidine has been examined by using density functional theory. Relative to the aminolysis of 6-chloropyrimidine, the addition of an electron-donating NH(2) group to C(2) increases the barrier to aminolysis, indicating that the third hydrogen bond does not play a catalytic role but introduces additional rigidity into the system. However, the computations suggest that there is an interesting correlation between the barrier to aminolysis and the proton affinity of the species that interacts with the incoming NH(3). To extend the range of proton affinities, the aminolysis of 6-chloropyrimidine was examined by using fluoro, imine, and thioketo derivatives of the uracil-derived bases. The proton affinity of the moiety that hydrogen bonds with NH(3) is decreased by fluoro substitution, and thus the aminolysis barriers are increased. Similarly, imine substitution enhances the PA of the moiety, which is reflected in a decrease in the aminolysis barriers. The same correlation exists for the thioketo-derived bases, whose PAs are intermediate between the fluoro and imine derivatives. Thus, the aminolysis of 6-chloropryimidine and 2-amino-6-chloropyrimidine demonstrates the importance of a well-chosen proton acceptor and the catalytic possibilities associated with the formation of multiple hydrogen bonds.  相似文献   

3.
The reaction of imidazole in aqueous solution with toluene-4-sulfonate salts of substituted phenyl N-methylpyridinium-4-carboxylate esters obeys the rate law: k(obs) - k(background) = k2[Im] + k3[Im]2 where [Im] is the imidazole concentration present as free base. The parameters k2 and k3 fit Br?nsted type free energy correlations against the pKa of the leaving phenol with betaLg values of -0.65 and -0.42 respectively. The imidazolysis is insensitive to catalysis by general bases and yet k3 for the 3-cyanophenyl ester possesses a deuterium oxide solvent isotope effect of 4.43 consistent with rate limiting proton transfer. A special catalytic function is proposed for decomposition of the tetrahedral addition intermediate (T+/-) via k3 whereby the catalytic imidazole interacts electrophilically with the leaving phenolate ion and removes a proton from the nitrogen in the rate limiting step with subsequent non-rate limiting ArO-C bond fission. This is consistent with the change in effective charge on the leaving oxygen in the transition structure of k3 which is more positive (-0.42) than that expected (-0.60) for the equilibrium formation of the zwitterion intermediate. The catalytic function at the leaving oxygen is likely to be an electrophilic role of the NH as a hydrogen bond donor. In the k2 step the deuterium oxide solvent isotope effect of 1.51 for the 3-cyanophenyl ester and the betaLg of -0.65 are consistent with rate limiting expulsion of the phenolate ion from the T+/- intermediate. The absence of general base catalysis of imidazolysis rules out the established mechanism for aminolysis of esters where T+/- is stabilised by a standard rate limiting proton transfer. The kinetically equivalent term for k3 where T- reacts with the imidazolium ion as an acid catalyst would require this step to be rate limiting and involve proton transfer not consistent with departure of the good aryl oxide leaving group.  相似文献   

4.
The aminolysis of poly(styrene-co-methyl acrylate) (SMA) by octadecylamine was studied in solution and in the melt at temperatures around 200°C. This reaction is rather slow, so several types of catalysts were tested to accelerate it. The most efficient is 2-pyridone, a compound in tautomeric equilibrium with 2-hydroxypyridine. A mechanism of the catalytic reaction is proposed whereby the tautomeric nature of the catalyst plays a key role in a very important step of the reaction, namely the proton transfer. This mechanism is confirmed by the kinetic data determined in a 1,2,4-trichlorobenzene solution and in the melt. In addition, it was found that the kinetic data obtained in both media are very close, indicating no significant difference of local polarity in the two reaction media. Data also show only a minor effect due to difference in viscosity. Finally, the question of the homogeneity of the molten medium is discussed.  相似文献   

5.
A comprehensive computational mechanistic study regarding intramolecular hydroamination (HA) of aminoalkenes mediated by a recently reported class of highly active cyclopentadienyl-bis(oxazolinyl)borate {Cpo}Y(III) alkyl compounds is presented. Two distinct mechanistic pathways of catalytic HA mediated by rare earth and alkaline earth compounds have emerged over the years, describing amidoalkene → cycloamine conversion proceeding through a stepwise σ-insertive mechanism or a concerted non-insertive N-C/C-H bond forming pathway. Notably, both mechanisms account equally for reported distinct process features. Non-competitive kinetic demands revealed for the concerted amino proton transfer associated with N-C ring closure, which commences from a {Cpo(M)}Y(NHR)·(NH(2)R) substrate adduct and evolves through a six-centre TS structure, militates against a proton-triggered non-insertive pathway to promote HA for the rare earth catalyst at hand. A stepwise σ-insertive pathway, featuring rapid and reversible olefin insertion into the Y-N amido σ-bond, linked to a less facile and irreversible intramolecular Y-C azacycle tether aminolysis, is found to prevail energetically. The assessed effective barrier for turnover-limiting aminolysis matches the empirically determined Eyring parameter well and the computationally estimated primary KIE is close to the observed values. A recent computational study revealed a similar scenario for an analogous tris(oxazolinyl)borate {To(M)}Mg system. Valuable insights into the catalytic structure-reactivity relationships have been unveiled by a comparison of {Cpo(M)}Y(NHR)- and {To(M)}Mg(NHR)-catalysed hydroaminations.  相似文献   

6.
Neutron crystallography was used to directly locate two protons before and after a pH‐induced two‐proton transfer between catalytic aspartic acid residues and the hydroxy group of the bound clinical drug darunavir, located in the catalytic site of enzyme HIV‐1 protease. The two‐proton transfer is triggered by electrostatic effects arising from protonation state changes of surface residues far from the active site. The mechanism and pH effect are supported by quantum mechanics/molecular mechanics (QM/MM) calculations. The low‐pH proton configuration in the catalytic site is deemed critical for the catalytic action of this enzyme and may apply more generally to other aspartic proteases. Neutrons therefore represent a superb probe to obtain structural details for proton transfer reactions in biological systems at a truly atomic level.  相似文献   

7.
A thorough computational exploration of the mechanistic intricacies of the intermolecular hydroamination (HA) of vinylarenes by a recently reported class of kinetically stabilised iminoanilide [{N^N}Ae{N(SiMe3)2} ? (THF)n] alkaline‐earth amido compounds (Ae=Ca, Sr, Ba) is presented. Two distinct mechanistic pathways for catalytic HA mediated by alkaline‐earth and rare‐earth compounds have emerged over the years that account equally well for the specific features of the process. On one hand, a concerted proton‐assisted pathway to deliver the amine product in a single step can be invoked and, on the other, a stepwise σ‐insertive pathway that comprises a rapid, reversible migratory olefin insertion step linked to a less facile, irreversible Ae?C alkyl bond aminolysis. The results of the study presented herein, which employed a heavily benchmarked and reliable DFT methodology, supports a stepwise σ‐insertive pathway that involves fast and reversible migratory C?C bond insertion into the polar Ae?N pyrrolido σ bond. This proceeds with strict 2,1 regioselectivity via a highly polarised four‐centre transition state (TS) structure, linked to irreversible intramolecular Ae?C bond aminolysis of the alkaline‐earth alkyl intermediate as the energetically favourable mechanism. Turnover‐limiting aminolysis is consistent with the significant KIE measured; the DFT‐derived effective barrier matches the Eyring parameter empirically determined for the best‐performing {N^N}Ba(NR2) catalyst gratifyingly well. It also predicts the observed trend in reactivity (Ca<Sr<Ba) correctly and the computationally estimated primary KIE is close to the observed values. Non‐competitive kinetic demands militate against the operation of the alternative concerted proton‐assisted pathway, which describes N?C bond formation triggered by concomitant amino proton transfer at the C?C linkage via a multi‐centre TS structure. A detailed comparison of {N^N}Ae(NR2) catalysts revealed that the variation in the Ae?pyrrolido bond strength together with the degree of protection of the alkaline earth by a sterically encumbering iminoanilide ligand scaffold not only profoundly influences the performance in HA catalysis, but also the likelihood of traversing rival mechanistic pathways.  相似文献   

8.
This investigation is devoted to the interaction of Δ2-oxazolin-5-ones, S(—)-α-phenylethy lamine and H2 in the presence of PdCl2 which yields α-phenylethylamides of acylamino acids of the S,S configuration, hydrolysis of the latter compounds resulting in the formation of optically pure amino acids and providing for chiral amine recycling. In DME, double bond saturation and ring opening in Δ2-oxazolin-5-one occur within the catalytic complex sphere without the intermediate formation of saturated oxazolinones or unsaturated amides. In t-BuOH, saturated oxazolinones are formed as intermediates. The catalyst formed in situ was shown to be a zero-valent Pd complex with S(—)-α-phenylethylamine stabilized by substrate coordination. The stereochemical pathway of the reactions has been traced. Reductive aminolysis involves cis-addition of H2, while in reductive methanolysis H2 trarns-addition occurs. The suggested process mechanism accounts for the ratio of aminolysis and racemization rates for saturated oxazolinones and the ratio of diastereomers of α-phenylethylamides of acylamino acids obtained by reacting unsaturated Δ2oxazolin-5-ones with S(—)-α-phenyl-ethylamine. In agreement with the postulated mechanism, the catalyst enantioselectivity is observed at the steps of substrate addition to the catalyst and proton transfer to the α-C-center, provided the process is carried out in DME. In the case of t-BuOH, the enantiodifferentiating action of the catalyst vanishes as a result of racemization, and process stereo selectivity appears at the step of saturated oxazolinone aminolysis with a chiral amine.  相似文献   

9.
Different possible pathways of the aminolysis reaction of succinic anhydride were investigated by applying high level electronic structure theory, examining the general base catalysis by amine and the general acid catalysis by acetic acid, and studying the effect of solvent. The density functional theory at the B3LYP/6-31G(d) and B3LYP/6-311++G(d,p) levels was employed to investigate the reaction pathways for the aminolysis reaction between succinic anhydride and methylamine. The single point ab initio calculations were based on the second-order M?ller-Plesset perturbation theory (MP2) with 6-31G(d) and 6-311++G(d,p) basis sets and CCSD(T)/6-31G(d) level calculations for geometries optimized at the B3LYP/6-311++G(d,p) level of theory. A detailed analysis of the atomic movements during the process of concerted aminolysis was further obtained by intrinsic reaction coordinate calculations. Solvent effects were assessed by the polarized continuum model method. The results show that the concerted mechanism of noncatalyzed aminolysis has distinctly lower activation energy compared with the addition/elimination stepwise mechanism. In the case of the process catalyzed by a second methylamine molecule, asynchronous proton transfer takes place, while the transition vectors of the acid-catalyzed transition states correspond to the simultaneous motion of protons. The most favorable pathway of the reaction was found through the bifunctional acid catalyzed stepwise mechanism that involves formation of eight-membered rings in the transition state structures. The difference between the activation barriers for the two mechanisms averages 2 kcal/mol at various levels of theory.  相似文献   

10.
The mismatched fast-electron-slow-proton process in the electrocatalytic oxygen evolution reaction (OER) severely restricts the catalytic efficiency. To overcome these issues, accelerating the proton transfer and elucidating the kinetic mechanism are highly sought after. Herein, inspired by photosystem II, we develop a family of OER electrocatalysts with FeO6/NiO6 units and carboxylate anions (TA2−) in the first and second coordination sphere, respectively. Benefiting from the synergistic effect of the metal units and TA2−, the optimized catalyst delivers superior activity with a low overpotential of 270 mV at 200 mA cm−2 and excellent cycling stability over 300 h. A proton-transfer-promotion mechanism is proposed by in situ Raman, catalytic tests, and theoretical calculations. The TA2− (proton acceptor) can mediate proton transfer pathways by preferentially accepting protons, which optimizes the O−H adsorption/activation process and reduces the kinetic barrier for O−O bond formation.  相似文献   

11.
Density functional methods have been applied to investigate the irreversible transamination between glyoxylic acid and pyridoxamine analog and the catalytic mechanism for the critical [1,3] proton transfer step in aspartate aminotransferase (AATase). The results indicate that the catalytic effect of pyridoxal 5'-phosphate (PLP) may be attributed to its ability to stabilize related transition states through structural resonance. Additionally, the PLP hydroxyl group and the carboxylic group of the amino acid can shuttle proton, thereby lowering the barrier. The rate-limiting step is the tautomeric conversion of the aldimine to ketimine by [1,3] proton transfer, with a barrier of 36.3 kcal/mol in water solvent. A quantum chemical model consisting 142 atoms was constructed based on the crystal structure of the native AATase complex with the product L-glutamate. The electron-withdrawing stabilization by various residues, involving Arg386, Tyr225, Asp222, Asn194, and peptide backbone, enhances the carbon acidity of 4'-C of PLP and Calpha of amino acid. The calculations support the proposed proton transfer mechanism in which Lys258 acts as a base to shuttle a proton from the 4'-C of PLP to Calpha of amino acid. The first step (proton transfer from 4'-C to lysine) is shown to be the rate-limiting step. Furthermore, we provided an explanation for the reversibility and specificity of the transamination in AATase.  相似文献   

12.
A representative acetate-(5-methylimidazole)-methanol system has been employed as a model of catalytic triad in serine protease to validate the formation processes of low-barrier H-bonds (LBHB) at the B3LYP/6-311++G** level of theory, and variable H-bonding characters from conventional ones to LBHBs have been represented along with the proceedings of proton transfer. Solvent effect is an important factor in modulation of the existence of an LBHB, where an LBHB (or a conventional H-bond) in the gas phase can be changed into a non-LBHB (an LBHB) upon solvation. The origin of the additional stabilization energy arising from the LBHB may be attributed to the H-bonding energy difference before and after proton transfer because the shared proton can freely move between the proton donor and proton acceptor. Most importantly, the order of magnitude of the stabilization energy depends on the studied systems. Furthermore, the nonexistence of LBHBs in the catalytic triad of serine proteases has been verified in a more sophisticated model treated using the ONIOM method. As a result, only the single proton transfer mechanism in the catalytic triad has been confirmed and the origin of the powerful catalytic efficiency of serine proteases should be attributed to other factors rather than the LBHB. Supported by the National Natural Science Foundation of China (Grant Nos. 20633060 & 20573063), the Natural Science Foundation of Shandong Province (Grant No. Y2007B23), the Scientific Research Foundation of Qufu Normal University (Grant Nos. Bsqd2007003 and Bsqd2007008), and the State Key Laboratory of Physical Chemistry of Solid Surfaces (Xiamen University)  相似文献   

13.
In this paper, the mechanism of transfer hydrogenation of acetophenone catalyzed by ruthenium-acetamido complex was studied using density function theory (DFT) method. The catalytic cycle of transfer hydrogenation consists of hydrogen transfer (HT) step and dehydrogenation (DH) step of isopropanol (IPA). Inner sphere mechanism (paths 1 and 7) and outer sphere mechanism (paths 2-6) in HT step are fully investigated. Calculated results indicate that DH step of IPA (from (i)1 to (i)2) is the rate-determining step in the whole catalytic cycle, which has a potential energy barrier of 16.2 kcal/mol. On the other hand, the maximum potential energy barriers of paths 1-7 in the HT step are 5.9, 12.7, 24.4, 16.8, 23.7, 7.2, and 6.1 kcal/mol, respectively. The inner sphere pathways (paths 1 and 7) are favorable hydrogen transfer modes compared with outer sphere pathways, and the proton transferred to the oxygen atom of acetophenone comes from the hydroxyl group but not from amino group of acetamido ligand. Those theoretical results are in agreement with experimental report. However, in view of this DFT study in the inner sphere mechanism of HT step, hydride transfer and proton transfer are concerted and asynchronous hydrogen transfer but not a stepwise one, and hydride transfer precedes proton transfer in this case.  相似文献   

14.
A comprehensive exploration of the aminolysis mechanism for methyl indole-3-acetate with ammonia is carried out by employing the B3 LYP/6-311++G(d,p), M06-2 X/6-311++G(d,p) and MP2/6-311++G(d,p)//M06-2 X/6-311++G(d,p) levels. Two alterative reaction channels of the concerted and addition/elimination stepwise processes including the uncatalyzed, base-catalyzed reactions are taken into consideration. Subsequently, the substituent effects and solvent effects in methanol are also evaluated at the M06-2 X/6-311++G(d,p) level. The calculated results indicate that the calculated values of M06-2 X level are quite close to those of MP2, the stepwise pathway has more advantages to the concerted one for all of the reaction processes and the catalyst facilitates the proton migration and decreases the energy barriers as well. It is shown that the most preferred mechanism is the based-catalyzed stepwise process, the substituent of NH2 group slightly accelerates all the aminolysis reaction processes, and the solvent effect does not remarkably change the mechanism of the reaction.  相似文献   

15.
The present mechanistic study comprehensively explores alternative scenarios for activation of the amine-linked allene C=C linkage toward nucleophilic amido attack in the intramolecular hydroamination of a prototypical 1,3-disubstituted aminoallene by a well-characterised samarocene-amido catalyst. Firstly, the non-insertive mechanism by Scott featuring C-N ring closure with concomitant amino proton delivery onto the allene unit has been explored and its key features have been defined. This scenario has been compared and contrasted with the classical stepwise Ln-N σ-bond insertive mechanism that involves rapid substrate association/dissociation equilibria for the Ln-amido-substrate resting state and also for Ln-azacycle intermediates, facile and reversible exocyclic ring closure through migratory allene insertion into the Ln-N amido σ-bond, linked to turnover-limiting Ln-C azacycle aminolysis. The Ln-N σ-bond insertive mechanism prevails for the studied intramolecular hydroamination of 4,5-heptadien-1-ylamine 1 by [Cp*(2)Sm-CH(TMS)(2)] starting material 2. The following aspects are in support of this mechanism: 1) the derived rate law is consistent with the observed empirical rate law; 2) the assessed effective barrier for turnover-limiting aminolysis does agree reasonably well with empirically determined Eyring parameters; 3) the ring-tether double bond selectivity is consistently elucidated. On the other hand, this study reveals that the non-insertive mechanism, which features a prohibitively large barrier, is unachievable. Spatial demands around the lanthanide centre effect the two mechanisms differently. A sufficiently accessible lanthanide is a crucial requirement of the Ln-N σ-bond insertive mechanism and enhanced encumbrance renders the cyclisation step less accessible kinetically. This contrasts with the non-insertive mechanism, where greater lanthanide protection has a rather modest influence. The present study indicates that the non-insertive mechanism would prevail if the lanthanide centre were to be protected effectively against C=C bond approach, whilst ensuring a high polarity of the Ln-N σ-bond together with a sufficiently acidic amino proton.  相似文献   

16.
The present study comprehensively explores alternative mechanistic pathways for intramolecular hydroamination of 2,2-dimethyl-4-penten-1-amine (1) by [{To(M)}MgMe] (To(M)=tris(4,4-dimethyl-2-oxazolinyl)phenylborate) (2) with the aid of density functional theory (DFT) calculations. A single-step amidoalkene → cycloamine conversion through a concerted proton transfer associated with N-C ring closure has been explored as one possible mechanism; its key features have been described. This non-insertive pathway evolves via a six-centre TS structure featuring activation of the olefin unit towards nucleophilic amido attack outside the immediate vicinity of the metal centre by amino proton delivery and describes a viable mechanistic variant for alkaline-earth metal-mediated aminoalkene hydroamination. However, herein is presented sound evidence for the operation of the Mg-N amido σ-bond insertive mechanism, its turnover-limiting activation barrier is found to be 5.0 kcal mol(-1) lower than for the non-insertive mechanism, for the cyclohydroamination of 2,2-disubstituted 4-aminoalkenes by a [{To(M)}Mg-NHR] catalyst. The operative mechanism involves rapid equilibria of the {To(M)}Mg-amidoalkene resting state 3 with its amine adduct, easily accessible and thermodynamically disfavoured, hence reversible, 1,2-olefin insertion into the Mg-N amido σ-bond with ring closure at 3, linked to turnover-limiting Mg-C azacycle tether aminolysis by an adduct substrate molecule, followed by facile cycloamine liberation to regenerate the active catalyst species 3. The following aspects are in support of this scenario: 1) the derived rate law is consistent with the experimentally obtained empirical rate law; 2) the reasonable agreement between the computationally estimated and the observed value of the primary KIE; 3) the assessed effective activation barrier for turnover-limiting aminolysis matches empirically determined Eyring parameters remarkably well; and 4) the observed resistance of isolated 3 to undergo amidoalkene cycloamine/cycloamido transformation until further quantities of substrate is added is consistently explained. The herein unveiled insights into the structure-reactivity relationships will undoubtedly govern the rational design of alkaline-earth metal-based catalysts and likely facilitate further advances in the area.  相似文献   

17.
A theoretical density functional theory (DFT, B3LYP) investigation has been carried out on the catalytic cycle of the carbonic anhydrase. A model system including the Glu106 and Thr199 residues and the "deep" water molecule has been used. It has been found that the nucleophilic attack of the zinc-bound OH on the CO(2) molecule has a negligible barrier (only 1.2 kcal mol(-1)). This small value is due to a hydrogen-bond network involving Glu106, Thr199, and the deep water molecule. The two usually proposed mechanisms for the internal bicarbonate rearrangement have been carefully examined. In the presence of the two Glu106 and Thr199 residues, the direct proton transfer (Lipscomb mechanism) is a two-step process, which proceeds via a proton relay network characterized by two activation barriers of 4.4 and 9.0 kcal mol(-1). This pathway can effectively compete with a rotational mechanism (Lindskog mechanism), which has a barrier of 13.2 kcal mol(-1). The fast proton transfer found here is basically due to the effect of the Glu106 residue, which stabilizes an intermediate situation where the Glu106 fragment is protonated. In the absence of Glu106, the barrier for the proton transfer is much larger (32.3 kcal mol(-1)) and the Lindskog mechanism becomes favored.  相似文献   

18.
The mechanism of the enantioselective ring-opening aminolysis of 4,4-dimethyl-3,5,8-trioxabicyclo[5.1.0]octane with benzylamine, catalyzed by the titanium-BINOLate species generated in situ from a mixture of enantiopure BINOL (1,1'-bi-2-naphthol), Ti(OiPr)4, and H2O in the presence of benzylamine in toluene, was investigated in detail using a combination of reaction profile measurements, nonlinear effect (NLE) studies, solution (1)H NMR analysis, electrospray ionization mass spectrometry (ESI-MS), as well as the results obtained from screening of dynamic catalyst library of complexes L(a)/Ti/L(b) (L(a) or L(b) = chiral diol ligands). The BINOL-to-titanium ratio and the presence or absence of water in the catalytic system were found to exert profound influences on both reactivity and enantioselectivity of the reaction. The NLE studies revealed that the titanium species involved in the catalysis should contain more than one BINOL unit, either within or at the periphery of the catalytic cycle. ESI-MS analysis of the catalytic systems provided strong support in favor of the mechanistic proposal that titanium complexes bearing the Ti(BINOLate)2 moiety should be the active species responsible for the catalysis, which was further confirmed by the observation of synergistic effect of the heteroligand combinations during screening of the dynamic catalyst library. ESI-MS analysis of the reaction system indicated that water does not take part in the catalyst generation, which is an unprecedented finding in contrast to the previous mechanistic understandings in the titanium catalytic chemistry involving the participation of water. Most probably, water functions as a proton shuttle in the catalysis, facilitating the proton transfer between the reactants. Furthermore, the origin of (+)-NLE observed in the present catalytic system is rationalized on the basis of the ESI-MS analysis of the catalyst system prepared from a 1:1 pseudoracemic mixture of (S)-BINOL and (R)-3,3',6,6'-D4-BINOL. Finally, the reactivity differences between several couples of epoxide/amine combinations were tentatively rationalized on the basis of the arguments on their relative coordination preferences, and several other aliphatic amines were also found to efficiently ring-open the titled epoxide in excellent enantioselectivities. The results from this study are expected to shed some light on the often elusive chemistry of Ti(IV)-based catalytic systems where water or molecular sieves (or alcohols, etc.) are found to play an important yet inexplicable role and may help the search for effective asymmetric Ti(IV) catalysts for other types of reactions.  相似文献   

19.
A systematic investigation of the proton transfer in the tautomerization of 2-mercaptoimidazole was undertaken. Calculations in aqueous solution were performed using the combined supramolecular/continuum and the direct continuum models, respectively. Complexes containing one and two water molecules around the hydrophilic site of 2-mercaptoimidazole were used for the combined supramolecular/continuum calculation. DFT results predict that the barrier height for non-water-assisted intramolecular proton transfer is very high (175.8 kJ/mol). Hydrogen bonding between 2-mercaptoimidazole and the water molecule(s) will dramatically lower the barrier by the concerted multiple proton transfer mechanism. The proton transfer process through a eight-member ring formed by 2-mercaptoimidazole and two water molecules is found to be more efficient one and the calculated barrier height is reduced to ca. 72 kJ/mol.  相似文献   

20.
Plots of log k(0) vs pH for the cyclization of trifluoroethyl and phenyl 2-aminomethylbenzoate to phthalimidine at 30 degrees C in H(2)O are linear with slopes of 1.0 at pH >3. The values of the second-order rate constants k(OH) for apparent OH(-) catalysis in the cyclization reactions are 1.7 x 10(5) and 5.7 x 10(7) M(-)(1) s(-)(1), respectively. These rate constants are 10(5)- and 10(7)-fold greater than for alkaline hydrolysis of trifluoroethyl and phenyl benzoate. The k(OH) for cyclization of the methyl ester is 7.2 x 10(3) M(-)(1) s(-)(1). Bimolecular general base catalysis occurs in the intramolecular nucleophilic reactions of the neutral species. The value of the Bronsted coefficient beta for the trifluoroethyl ester is 0.7. The rate-limiting step in the general base catalyzed reaction involves proton transfer in concert with leaving group departure. The mechanism involving rate-determining proton transfer exemplified by the methyl ester in this series (beta = 1.0) can then be considered a limiting case of the concerted mechanism. General acid catalysis of the neutral species reaction or a kinetic equivalent also occurs when the leaving group is good (pK(a) 相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号