首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Formation constants (logK MAL MA) of the mixed complexes of the type M–A–L (where M=Mn(II), Co(II), Ni(II), Cu(II), Ce(III), Th(IV), and UO2(II); A=oxine and L=sulphamerazine or sulphadiazine) have been determined pH-metrically in 60% (v/v) ethanol–water mixture at 25°C and constant ionic strength (μ=0.1 M NaCl). The mode of chelation was ascertained by conductivity measurements. The stability sequence with respect to metal ions have been found to be Cu(II)>Ni(II)>Co(II)>Mn(II) and Th(IV)>UO2(II)>Ce(III). CuAL ternary solid complexes have been prepared and characterized on the basis of elemental analysis and IR-spectroscopy. The thermal degradations of the prepared complexes are discussed in an attempt to assign the intermediate compounds formed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
The following ions [UO2(NO3)3], [UO2(ClO4)3], [UO2(CH3COO)3] were generated from respective salts (UO2(NO3)2, UO2(ClO4)3, UO2(CH3COO)2) by laser desorption/ionization (LDI). Collision induced dissociation of the ions has led, among others, to the formation of UO4 ion (m/z 302). The undertaken quantum mechanical calculations showed this ion is most likely to possess square planar geometry as suggested by MP2 results or strongly deformed geometry in between tetrahedral and square planar as indicated by DFT results. Interestingly, geometrical parameters and analysis of electron density suggest it is an UVI compound, in which oxygen atoms bear unpaired electron and negative charge.  相似文献   

3.
Single crystals of (H3O)[UO2(CH3COO)3] (I) and (NH(C2H5)3)[UO2(CH3COO)3] (II) are synthesized, and their structures are studied by X-ray crystallography. Compound I crystallizes in the tetragonal crystal system with the unit cell parameters a = 13.70640(10) ?, c = 27.5258(5) ?, V = 5171.14(11) ?3, space group I41/a, Z = 16, R = 0.0238. The crystals of compound II are orthorhombic with the parameters a = 13.3685(3) ?, b = 10.6990(3) ?, c = 12.2616(3) ?, V = 1753.77(8) ?3, space group Pna21, Z = 4, R = 0.0228. The uranium-containing structural units of crystals I and II are [UO2(CH3COO)3] island mononuclear groups belonging to the A B301(A = UO22+, B01 = CH3COO) crystal-chemical group of uranyl complexes. [UO2(CH3COO)3] complexes are linked into a three-dimensional framework by electrostatic interactions with the outer-sphere cations and by hydrogen bonds involving the hydrogen atoms of hydroxonium (I) or triethylammonium (II) with the oxygen atoms of the acetato groups.  相似文献   

4.
Stability data on the formation of dioxouranium(VI) species with polyacrylic (PAA) and fulvic acids (FA) are reported with the aim to define quantitatively the sequestering capacity of these high molecular weight synthetic and naturally occurring ligands toward uranium(VI), in aqueous solution. Investigations were carried out at t = 25 °C in NaCl medium at different ionic strengths and in absence of supporting electrolyte for uranyl–fulvate ( \textUO22+ {{\text{UO}}_{2}}^{2+} –FA) and uranyl–polyacrylate ( \textUO 2 2+ {{\text{UO}}_{ 2}}^{ 2+ } –PAA, PAA MW 2 kDa) systems, respectively. The experimental data are consistent with the following speciation models for the two systems investigated: (i) UO2(FA1), UO2(FA1)(FA2), UO2(FA1)(FA2)(H) for \textUO 2 2+ {{\text{UO}}_{ 2}}^{ 2+ } –fulvate (where FA1 and FA2 represent the carboxylic and phenolic fractions, respectively, both present in the structure of FA), and (ii) UO2(PAA), UO2(PAA)(OH), (UO2)2(PAA)(OH)2 for \textUO 2 2+ {{\text{UO}}_{ 2}}^{ 2+ } –polyacrylate. By using the stability data obtained for all the complex species formed, the uranium(VI) sequestration by PAA and FA was expressed by the pL50 parameter [i.e. the −log(total ligand concentration) necessary to bind 50% of uranyl ion] at different pH values. A comparison between pL50 values of FA and PAA and some low molecular weight carboxylic ligands toward uranyl ion is also given.  相似文献   

5.
New complexes of MoO2(VI), WO2(VI), Th(IV) and UO2(VI) with aroyl hydrazones have been prepared and characterized by various physicochemical methods. Elemental analysis suggested 1 : 1 metal : ligand stoichiometry for MoO2(VI), WO2(VI), and UO2(VI) complexes whereas 1 : 2 for Th(VI) complexes. The physicochemical studies showed that MoO2(VI), Th(IV) and UO2(VI) complexes are octahedral. The electrical conductivity of these complexes lies in the range 1.00 × 10−7−3.37 × 10−11Ω−1 cm−1 at 373 K. The complexes were found to be quite stable and decomposition of the complexes ended with respective metal oxide as a final product. The thermal dehydration and decomposition of these complexes were studied kinetically using both Coats-Redfern and Horowitz-Metzger methods. It was found that the thermal decomposition of the complexes follow first order kinetics. The thermodynamic parameters of the decomposition are also reported. The biological activities of ligands and their metal complexes were tested against various microorganisms.  相似文献   

6.
New divalent transition metal 3,5-pyrazoledicarboxylate hydrates of empirical formula Mpz(COO)2(H2O)2, where M=Mn, Co, Ni, Cu, Zn and Cd (pz(COO)2=3,5-pyrazoledicarboxylate), metal hydrazine complexes of the type Mpz(COO)2N2H4 where M=Co, Zn or Cd and Mpz(COO)2nN2H4·H2O, where n=1 for M=Ni and n=0.5 for M=Cu have been prepared and characterized by physico-chemical methods. Electronic spectroscopic data suggest that Co and Ni complexes adopt an octahedral geometry. The IR spectra confirm the presence of unidentate carboxylate anion (Δν=νasy(COO)–νsym(COO)>215 cm–1) in all the complexes and bidentate bridging hydrazine (νN–N=985–950 cm–1) in the metal hydrazine complexes. Both metal carboxylate and metal hydrazine carboxylate complexes undergo endothermic dehydration and/or dehydrazination followed by exothermic decomposition of organic moiety to give the respective metal oxides as the end products except manganese pyrazoledicarboxylate hydrate, which leaves manganese carbonate. X-ray powder diffraction patterns reveal that the metal carboxylate hydrates are isomorphous as are those of metal hydrazine complexes of cobalt, zinc and cadmium.  相似文献   

7.
FT–IR spectroscopy and single‐crystal X‐ray structure analysis were used to characterize the discrete neutral compound diaquadioxidobis(n‐valerato‐κ2O,O′)uranium(VI), [UO2(C4H9COO)2(H2O)2], (I), and the ionic compound potassium dioxidotris(n‐valerato‐κ2O,O′)uranium(VI), K[UO2(C4H9COO)3], (II). The UVI cation in neutral (I) is at a site of 2/m symmetry. Potassium salt (II) has two U centres and two K+ cations residing on twofold axes, while a third independent formula unit is on a general position. The ligands in both compounds were found to suffer severe disorder. The FT–IR spectroscopic results agree with the X‐ray data. The composition and structure of the ionic potassium uranyl valerate are similar to those of previously reported potassium uranyl complexes with acetate, propionate and butyrate ligands. Progressive lengthening of the alkyl groups in these otherwise similar compounds was found to have an impact on their structures, including on the number of independent U and K+ sites, on the coordination modes of some of the K+ centres and on the minimum distances between U atoms. The evolution of the KUO6 frameworks in the four homologous compounds is analysed in detail, revealing a new example of three‐dimensional topological isomerism in coordination compounds of UVI.  相似文献   

8.
New mixed-ligand complexes of general formulae Mn(4-bpy)(CCl3COO)2⋅H2O, Ni(4-bpy)2(CCl3COO)2⋅2H2O and Zn(4-bpy)2(CCl3COO)2⋅2H2O (where 4-bpy=4,4’-bipyridine) were obtained and characterized. The IR spectra, conductivity measurements and other physical properties of these compounds were discussed. The central atoms M(II) form coordinate bonds with title ligands. The thermal behaviour of the synthesized complexes was studied in air. During heating the complexes decompose via different intermediate products to Mn3O4, NiO and ZnO; partial volatilization of ZnCl2was observed. A coupled TG-MS system was used to the analysis of the principal volatile thermal decomposition products of Mn(II) and Ni(II) complexes. The principal volatile mass fragments correspond to: H2O+, OH+, CO+ 2, HCl+, Cl+ 2, CCl+ and other. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
M2UO2(C2O4)2nH2O compounds (M=K, Rb and Cs)have been prepared and characterized by chemical and thermal analyses as well as by X-ray diffraction and infrared spectroscopy. X-ray powder data show that the compounds belong to an orthorhombic system. Thermal and infrared studies show that the compounds decompose to M2UO4 through the formation of alkali metal carbonate and UO2 as intermediates. K2UO2(C2O4)2⋅3H2O, and Rb2UO2(C2O4)2⋅2H2O gave K2UO4, Rb2UO4 at 700 and 600°C respectively, while in the case of Cs2UO2(C2O4)2⋅2H2O, the intermediate products of decomposition reacted to yield Cs2U4O13 at 1000°C. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Cs3[UO2(CH3COO)3]2[UO2(CH3COO)(NCS)2(H2O)] (I) and Cs5[UO2(CH3COO)3]3[UO2 (NCS)4(H2O)] · 2H2O (II) have been synthesized via the reaction between uranyl acetate and cesium thiocyanate in aqueous solution. According to single-crystal X-ray diffraction data, both compounds crystallize in monoclinic system with the unit cell parameters a = 18.7036(5) Å, b = 16.7787(3) Å, c = 12.9636(3) Å, β = 92.532(1)°, space group C2/c, Z = 4, R = 0.0434 (I); and a = 21.7843(3) Å, b = 24.6436(5) Å, c = 13.1942(2) Å, β = 126.482(1)°, space group Cc, Z = 4, R = 0.0273 (II). Uranium-containing structural units of compound (I) are mononuclear [UO2(CH3COO)3]? and [UO2(CH3COO)(NCS)2(H2O)]? moieties, which correspond to the AB 3 01 and AB01M 3 1 crystallochemical groups (A = UO 2 2+ , B01 = CH3COO?, M1 = NCS? and H2O). The structure of compound II is built of [UO2(CH3COO)3]? and [UO2(NCS)4(H2O)]2? complexes, which belong to the AB 3 01 and AM 5 1 crystallochemical groups, respectively. Uranium-containing complexes in both structures are linked into a framework by hydrogen bonds and electrostatic interactions with cesium cations. The IR spectra of compounds I and II agree well with X-ray diffraction data.  相似文献   

11.
Summary The complexes M(acac)2(imidazole)2 (M = Co or NO and [M(acac)2B]n (M = Co, Ni or Zn; B = pyrazine or pyrimidine) have been prepared and their i.r. spectra determined over the 600–140 cm–1. range. The metal-oxygen and metal-nitrogen stretching frequencies, (M-O) and v(M-N), are assigned on the basis of the band shifts induced by deuteriation of the adducted base and by substitution of the metal ion. Three or fourv(M-O) bands are observed within the 600-200 cm–1 range. The twov(M-O) bands of higher frequency are considered to the coupled with internal ligand modes. TwovM-N) bands are observed within the 280–170 cm–1. range. The metal-ligand stretching frequencies are in good agreement with the values previously established for these vibrations in the [M(imidazole)6]2+ and Ni(acac)2(pyridine)2 complexes.  相似文献   

12.
The stability and solubility of UO2(OH)2 has been studied as a function of the humic acid concentration in 0.1M NaClO4, in the pH range from 4 to 7 under normal atmospheric conditions. The solid phase under investigation has been prepared by alkaline precipitation and characterized by TGA, ATR-FTIR, XRD, SEM and solubility measurements. According to the experimental data UO2(OH)2 is stable and remains the solubility limiting solid phase even in the presence of increased humic acid concentration in the solution. However, humic acid affects texture and particle size of the solid phase. Increasing humic acid concentration results in decreasing crystallite size of the UO2(OH)2 solid phase. Based on the solubility data, the logK sp (UO2(OH)2) has been evaluated to be −22.0±0.3 and the stability constant for the UO2(OH)HA(I) species has been estimated to be logβ 1101 = 15.3±0.5.  相似文献   

13.
Summary The species, UO2H3L, UO2H2L2–, UO2HL3–, UO2L4–, UO2(OH)L5– and UO2(OH)2L6– are found in the equilibria between uranyl ions and 3,3-bis[N,N-di(carboxymethyl)-aminomethyl]-o-cresolsulphonphthalein (H6L; xylenol orange; dcac) in aqueous solution. The equilibria have been studied by the potentiometric method at 25° and at an ionic strength of 0.1M (KNO3). New algebraic equations have been employed to evaluate the equilibrium constants.  相似文献   

14.
A new series of dioxouranium(VI) complexes of a potential ONNO tetradentate donor 2-aminobenzoylhydrazone of butane-2,3-dione (L1H2) have been synthesized. At pH 2·5–4·0, the donor (L1H2) reacts in the keto form and complexes of the type [UO2(L1H2)(X)2] (X=Cl, Br, NO 3 , NCS, ClO 4 , CH3COO, 1/2SO 4 2− ) are obtained. At higher pH (6·5–7), the complex of the enol form having the formula [UO2(L1)(H2O)] has been isolated. On reaction with a monodentate lewis base (B), both types of complexes yield adducts of the type [UO2(L1)(B)]. All these complexes have been characterised adequately by elemental analyses and other standard physicochemical techniques. Location of the bonding sites of the donor molecule around the uranyl ion, status of the uranium-oxygen bond and the probable structure of the complexes have also been discussed.  相似文献   

15.
Uranyl–sulphate complexes are the predominant U(VI) species present in acid solutions resulting either from underground uranium ore leaching or from the remediation of leaching sites. Thus, the study of U(VI) speciation in these solutions is of practical significance. The spectra of UO2(NO3)2 + Na2SO4 solutions of different Φ S = [SO42−]/[U(VI)] ratio at pH = 2 were recorded for this purpose. As the presence of uranyl-nitrate complexes should be expected under these experimental conditions, the spectra of UO2(NO3)2 + NaNO3 solutions with different Φ N = [NO3]/[U(VI)] ratio at pH = 2 were also measured. The effects of Φ S and Φ N ratios value were most pronounced in wavelength interval 380–500 nm. Therefore, these parts of experimental overall spectra were used for deconvolution into the spectra of individual species by the method proposed. It enabled to calculate stability constants of anticipated species at zero ionic strength. The Specific Ion Interaction Theory (SIT) was used for this purpose. Stability constants of UO2SO4, UO2(SO4)22−, UO2NO3 + and UO2(NO3)2 coincided well with published data, but those for UO2(SO4)34− and UO2(NO3)3 were significantly lower.  相似文献   

16.
The formation constants of dioxouranium(VI)-2,2′-oxydiacetic acid (diglycolic acid, ODA) and 3,6,9-trioxaundecanedioic acid (diethylenetrioxydiacetic acid, TODA) complexes were determined in NaCl (0.1≤I≤1.0 mol⋅L−1) and KNO3 (I=0.1 mol⋅L−1) aqueous solutions at T=298.15 K by ISE-[H+] glass electrode potentiometry and visible spectrophotometry. Quite different speciation models were obtained for the systems investigated, namely: ML0, MLOH, ML22−, M2L2(OH), and M2L2(OH)22−, for the dioxouranium(VI)–ODA system, and ML0, MLH+, and MLOH for the dioxouranium(VI)–TODA system (M=UO22+ and L = ODA or TODA), respectively. The dependence on ionic strength of the protonation constants of ODA and TODA and of both metal-ligand complexes was investigated using the SIT (Specific Ion Interaction Theory) approach. Formation constants at infinite dilution are [for the generic equilibrium pUO22++q(L2−)+rH+ (UO22+) p (L) q H r (2p−2q+r);β pqr ]: log 10 β 110=6.146, log 10 β 11−1=0.196, log 10 β 120=8.360, log 10 β 22−1=8.966, log 10 β 22−2=3.529, for the dioxouranium(VI)–ODA system and log β 110=3.636, log 10 β 111=6.650, log 10 β 11−1=−1.242 for dioxouranium(VI)–TODA system. The influence of etheric oxygen(s) on the interaction towards the metal ion was discussed, and this effect was quantified by means of a sigmoid Boltzman type equation that allows definition of a quantitative parameter (pL 50) that expresses the sequestering capacity of ODA and TODA towards UO22+; a comparison with other dicarboxylates was made. A visible absorption spectrum for each complex reaching a significant percentage of formation in solution (KNO3 medium) has been calculated to better characterize the compounds found by pH-metric refinement.  相似文献   

17.
The capillary electrophoresis method has been applied to the speciation study of uranium(VI) at room temperature, in 0.02M citrate buffer solutions, at pH values between 2.5 and 5.5 and at citrate/U ratios between 20 and 40. No negatively charged species have been pointed out at pH values lower than 3. For a pH value higher than 5, the electropherograms are ill-defined and the signals cannot be analyzed simply (owing to a high and rough baseline). In the pH range 3–5, up to 4 peaks can be attributed to U(VI) species. Two of them are likely due to the expected monomer [(UO2)(Cit)]and dimer [(UO2)2(Cit)2]2− complex species and these species are shown to be in quasi-equilibrium with two other species possessing slightly lower migration velocities, [(UO2)H(Cit)(OH)] and [(UO2)2H2(Cit)2(OH)2]2−, respectively. Speciation diagrams calculated by an exact analytical approach are proposed in order to explain the experimental results. A complete agreement between theoretical and experimental results needs to take into account kinetic and hydrolysis effects.  相似文献   

18.
The synthesis of a new vic-dioxime ligand, N,N2-dihydroxy-O 1,O 2-bis(4-methyl-2-oxo-2H-chromen-7-yl)oxalimidamid (LH2) (1), bearing functional coumarins and its soluble mono- {Ni(II), Cu(II), Co(II)} and dinuclear {UO2(II)} complexes are presented. The fluorescence properties due to the 7-hydroxy-4-methylcoumarin fluorophore, which is conjugated with vic-dioxime that functions as the MN4 core of 1 and its complexes, are also reported. The formation of coordination complexes resulted in the blue shift in excitation spectrum and fluorescence quenching of 1. Both mononuclear {(LH)2M, M=Ni(II), Cu(II), and Co(II)} and homodinuclear {(LH)2(UO2)2(OH)2)} complexes have been obtained with metal?:?ligand ratios of 1?:?2 and 2?:?2, respectively. The characterizations of the new compounds were made by elemental analysis, 1H-NMR, FT-IR, UV-Vis, and LCMS data. Redox behavior of 1, involving oxime and coumarin moieties, and its complexes with Ni(II), Cu(II), Co(II) and UO2(II) were investigated by cyclic voltammetry. The comparison of the electrochemical behavior of 1 with its complexes enabled us to identify metal-, oxime- and coumarin-based signals.  相似文献   

19.
The reduction of the uranyl-mellitate complex at the dropping mercury electrode has been studied in aqueous and dimethyl sulfoxide solution. In aqueous solution, besides the reduction waves of the uranyl-mellitate complex, corresponding to the reduction of U(VI) to U(V), and of U(V) to U(III), an adsorption wave and a catalytic hydrogen wave were obtained; the species formed below pH 4.0 was UO2(H3A)- and above pH 4.0 was UO2(OH)(H3A)2-. In dimethyl sulfoxide solution, two well-defined waves were observed; the first wave is due to reduction of a uranyl-mellitate-DMSO complex, and the second to reduction of mellitic acid. The species involved are UO2(DMSO)62+ below pH 2.2 and UO2(H3A)(DMSO)5-1 above pH 2.2. The activation energies of the reduction process were determined.  相似文献   

20.
In the present work the uranyl hexacyanoferrate (K2UO2[Fe(CN)6]) is deposited on the palladized aluminum (Pd-Al) electrode from a \textUO22 + + \textFe( \textCN )6 - 3 {\text{UO}}_{2}^{2 + } + {\text{Fe}}\left( {\text{CN}} \right)_{6}^{ - 3} solution. Then the anodic stripping chronopotentiometry (ASCP) was used to strip the K2UO2[Fe(CN)6] from the Pd-Al surface. The operational conditions including: pH, K3Fe(CN)6 concentration, deposition potential, deposition time and stripping current were optimized. The ASCP calibration graph was linear in concentration range 10–460 μM. of \textUO22 + {\text{UO}}_{2}^{2 + } and the detection limit was 8.5 μM. The interference of some concomitant ions during the deposition process of K2UO2[Fe(CN)6] was studied. The proposed method was successfully applied for analysis of some uranium mineral ores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号