首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
研究了反应温度、溶液浓度、固液比、固体粒径大小和搅拌速度对氯化铵溶液浸提粗硼砂(十水四硼酸钠,Na2B4O7·10H2O)动力学的影响。结果表明反应速率随反应温度、溶液浓度的增加和固体粒径、固液比的减小而增加,但搅拌速度对溶解速率无显著影响。根据均相和多相动反应力学模型研究了粗硼砂的溶解过程。结果表明溶解速率遵从假一级均相反应模型。粗硼砂在氯化铵溶液中溶解的活化能为82.73 kJ·mol-1。  相似文献   

2.
本文设计合成了两种以聚吡唑硼酸盐、吡唑为配体的铜配合物Cu2[ μ-pz]2[HB(pz)3]2(1)和Cu[B(pz)4]2(2)(pz:吡唑(C3H4N2))。运用元素分析、红外光谱对配合物进行了表征,并用X-ray衍射测定了它们的晶体结构。非等温热分解动力学研究表明:配合物1的热分解反应分两步,配合物2的热分解反应一步进行。通过计算,配合物1热分解的第一步反应的可能机理为成核与生长,n=1/4;第二步反应的可能机理为化学反应。其非等温动力学方程分别为:dα/dT=A/β e-E/RT·1/4(1-α)[-ln(1-α)]-3和dα/dT=A/β e-E/RT·(1-α)2。分解反应的表观活化能分别是520.37 kJ·mol-1和149.65 kJ·mol-1;指前因子lnA分别是118.06 s-1和28.10 s-1。配合物2热分解的可能机理为化学反应。其非等温动力学方程为:dα/dT=A/β e-E/RT·(1-α)2。分解反应的表观活化能是111.41 kJ·mol-1;指前因子lnA是21.20 s-1。  相似文献   

3.
采用一种简便的方法,合成了氧-硼共修饰的多壁碳纳米管材料,以此为载体制备的铂基催化剂具有更小的铂粒径、更高的电化学表面积(40 m2·gPt-1)和更高的氧还原活性(0.3 A·mgPt-1)。氧、硼在提高碳纳米管的载体分散性、控制铂颗粒的均匀性和粒径、促进氧还原反应的氧吸附/解离方面发挥着重要的作用。  相似文献   

4.
用3,5-二硝基水杨酸和硝酸铈为原料,制备了3,5-二硝基水杨酸铈(CeDNS),采用元素分析、X射线荧光光谱和FTIR对其进行了表征。用TG和DSC以及变温固相原位反应池/傅立叶变换红外光谱(RS-FTIR)联用技术研究了3,5-二硝基水杨酸铈的热分解机理,对主放热反应的DSC峰进行了数学处理,计算得到了动力学参数和动力学方程。结果表明,3,5-二硝基水杨酸铈的分解反应共有3个阶段,其中包括一个脱水吸热过程和一个主放热过程,主分解反应发生在第2阶段,主分解反应的表观活化能Ea与指前因子A分别为:159.17 kJ·mol-1 和1011.33 s-1,主分解阶段的反应机理服从Avrami-Erofeev方程(n=1/4),主分解反应的动力学方程为:dα/dt=1011.33×4(1-α)[-ln(1-α)]3/4e-1.92×104/T。  相似文献   

5.
采用差示扫描量热法(DSC)、热重和微分热重(TG-DTG)及固相原位反应池/快速扫描傅立叶变换红外联用技术(hyphenated in situ thermolysis/RSFTIR)研究了纳米结晶体Ni0.5Zn0.5Fe2O4与高氯酸铵(AP)组成的混合物的热行为和分解反应动力学。结果表明:Ni0.5Zn0.5Fe2O4使得AP的低、高温分解放热峰温分别提前17.44 K和27.74 K,并使得对应的分解热分别增加3.7 J·g-1和193.7 J·g-1。Ni0.5Zn0.5Fe2O4并不影响AP的晶转温度和晶转热。Ni0.5Zn0.5Fe2O4使得AP的TG曲线出现3个阶段,并使得后2个失重阶段的初始和终止温度都有所提前。凝聚相分解产物分析表明Ni0.5Zn0.5Fe2O4加速了凝聚相AP的分解及氨气的释放。含Ni0.5Zn0.5Fe2O4的AP的高温分解反应的动力学参数Ea=238.88 kJ·mol-1,A=1018.59 s-1,动力学方程可表示为dα/dt=1018.99(1-α)[-ln(1-α)]3/5e-2.87×104T。始点温度(Te)和峰顶温度(Tp)计算得出AP的热爆炸临界温度值分别为:574.83 K和595.41 K。分解反应的活化熵(ΔS)、活化焓(ΔH)和活化能(ΔG)分别为:109.61 J·mol-1·K-1、236.49 kJ·mol-1及172.58 kJ·mol-1。  相似文献   

6.
以TG-DTG为手段, 研究了N,N′-二(5,5-二甲基-2-磷杂-2-硫代-1,3-二噁烷-2-基)乙二胺(DPTDEDA)在空气中的热分解动力学,利用Friedman法、Flynn-Wall-Ozawa(FWO)法对DPTDEDA进行了动力学分析, 求出了该物质两个主要的热分解阶段的热分解动力学参数, 同时利用Coats-Redfern法、Achar法研究了该物质的热分解机理. 结果表明, 用Friedman法所求得的两个热分解阶段的表观活化能的平均值分别为128.03和92.59 kJ•mol-1; 而Flynn-Wall-Ozawa法所求得的两个热分解阶段的表观活化能的平均值分别为138.75和106.78 kJ•mol-1. 由Coats-Redfern法、Achar法得出DPTDEDA在空气中的热分解过程虽主要分为两段反应, 但经过推理其反应机理函数却是相同的, 为f(α)=3/2(1-α)4/3[(1-α)-1/3-1]-1.  相似文献   

7.
任元林  程博闻  张金树 《化学学报》2007,65(17):1892-1896
以TG-DTG为手段, 研究了N,N'-二(5,5-二甲基-2-磷杂-2-硫代-1,3-二噁烷-2-基)乙二胺(DPTDEDA)在氮气气氛中的热分解动力学, 利用 Kissinger法、Flynn-Wall-Ozawa(FWO)法对DPTDEDA进行了动力学分析, 求出了该物质的热分解动力学参数, 同时利用Satava-Sestak法研究了该物质的热分解机理. 结果表明, Kissinger法所求得的表观活化能为137.37 kJ•mol-1, 指前因子ln A=28.00; Flynn-Wall-Ozawa法所求得的活化能为139.83 kJ•mol-1. DPTDEDA的热分解机理为相边界反应, 其动力学方程为G(α)=1-(1-α)4, 反应级数n=4.  相似文献   

8.
合成了不对称氮氧杂链型配体N-(2′-羟基)苄基乙醇胺(HL),通过元素分析、IR和 1H NMR等手段进行了表征。用pH电位滴定法,在25±0.1℃,I=0.10 (KNO3)条件下,研究了该配体质子化及其与Cu(Ⅱ)离子配位热力学。在25±0.1℃,I=0.10 (KNO3), pH=7~9 (50 mol·L-1缓冲溶液)范围内,通过分光光度法测定了配合物对p-硝基苯酚乙酸酯(NA)水解催化动力学,得到了NA酯催化水解二级反应速率常数kNP((mol·L-1)-1·s-1)。结果表明:Cu(Ⅱ)离子与醇羟基配位作用较强,并且还与一个水分子有较弱的配位。配位醇羟基和水分子的离解常数pKa分别为7.62和11.22。在中性pH值可以产生具有有很强亲核能力的配位烷氧负离子Cu(Ⅱ)…-OR,配合物对酯的水解有金属离子Lewis酸活化和亲核试剂进攻双重催化作用,与碱性磷酸酯催化作用比较类似,在pH中性和弱碱性条件下对NA酯水解有很好的催化效果,当pH为9.0时,kNP达到0.12 (mol·L-1)-1·s-1。  相似文献   

9.
以LiOH·H2O、Ni(OAc)2·4H2O、Co(OAc)2·4H2O和MnO2为原料,在水热反应釜中预处理,然后进行高温固相反应,合成了一系列锂镍钴锰氧化物LiNi0.75-xCoxMn0.25O2(x=0.05,0.10,0.15,0.20,0.25)。通过X射线衍射(XRD)、扫描电子显微镜(SEM)和电化学性能测试对所得样品的结构、形貌、粒径及电化学性能进行了表征。结果表明,当x=0.20时,所合成的正极材料具有很好的α-NaFeO2型层状晶体结构,晶胞参数a=0.286 1 nm,c=1.416 4 nm, V=0.100 4 nm3,以50 mA·g-1的电流密度在3~4.3 V(vs Li/Li+)充放电时,首次放电比容量达172.5 mAh·g-1,首次放电效率高达90.9%,30个循环后其放电比容量依然保持在161.1 mAh·g-1。  相似文献   

10.
杂多酸盐K7[PTi2W10O40]·6H2O与牛血清白蛋白相互作用的研究   总被引:7,自引:0,他引:7  
Under the imitated physiological condition of animal body, the interactions of heteropoly salt (PM-19) with bovine serum albumin (BSA) were investigated by fluorescence and absorption spectroscopy. It was shown that this compound had a quite strong ability to quench the fluorescence launching from BSA. After analyzing the fluorescence quenching data according to Stern-Volmer equation and Lineweaver-Burk double-reciprocal equation, we found that BSA had reacted with PM-19 and formed a certain new compound. The quenching belonged to static fluorescence quenching. According to Lineweaver-Burk equation, the forming constants of the compound (298 K: 2.68 × 105 L·mol-1; 304 K: 2.19 × 105 L·mol-1; 310 K: 1.82 × 105 L·mol-1) and the thermodynamic parameters (ΔH=-24.72 kJ·mol-1; ΔS=20.97 J·mol-1·K-1 / 20.92 J·mol-1·K-1/ 20.97 J·mol-1·K-1; ΔG=-30.97 kJ·mol-1/ -31.08 kJ·mol-1/-31.22kJ·mol-1) at the corresponding temperatures were obtained. The latter shows that binding power between them is mainly electrostatic interaction. Based on F?rster′s non-radiation energy transfer mechanism, the binding locality (r=4.14 nm) was calculated between donor and accepter. The effect of PM-19 on the conformation of BSA was also analyzed by synchronous fluorescence spectroscopy.  相似文献   

11.
In this paper, the kinetic model of colemanite dissolution in gluconic acid solutions was carried out in a batch reactor. The effects of the particle size, reaction temperature, stirring speed, gluconic acid concentration, and solid/liquid ratio on colemanite dissolution were experimentally studied. The empirical parameters were the gluconic acid concentration (0.05-0.2 M), the temperature (20-50°C), the solid/liquid ratio (0.05/500-1.5/500 g⋅L−1), particle size (193.5-1000 μm), and stirring speed (400-700 rpm). The kinetic models for heterogeneous solid-liquid reactions were used with the dissolution data in evaluating the kinetic. The dissolution of colemanite in gluconic acid solutions was controlled by diffusion through the product layer. The activation energy was found to be 8.39 kJ⋅mol−1. The rate expression associated with the dissolution rate of colemanite depending on the parameters chosen may be summarized as follows:   相似文献   

12.
The dissolution of malachite particles in ammonium carbamate (AC) solutions was investigated in a batch reactor, using the parameters of temperature, AC concentration, particle size, and stirring speed. The shrinking core model was evaluated for the dissolution rate increased by decreasing particle size and increasing the temperature and AC concentration. No important effect was observed for variations in stirring speed. Dissolution curves were evaluated in order to test shrinking core models for fluid-solid systems. The dissolution rate was determined as being controlled by surface chemical reaction. The activation energy of the leaching process was determined as 46.04 kJ mol?1.  相似文献   

13.
Zeolite imidazolate frameworks (ZIFs) represent a class of metal‐organic frameworks (MOFs) for various potential applications due to their outstanding properties. However, to date, the creation of nanoframes with tunable structure faces a challenge. Herein, we develop a facile and efficient physical method that allows the preparation of ZIF‐90 with controllable surface area. In this study, the effect of various stirring time and speed in the acceleration of the precursor dissolution are revealed. The study shows that a moderate stirring speed (640 r · min–1) and reaction time (6 h) are the optimal conditions to synthesize ZIF‐90 with a high adsorption capacity. More importantly, the maximum adsorption amount of n‐hexane is up to 211 mg · g–1 by using this as‐prepared sample, which increases by 60 % in comparison with that of the minimum from other sample (133 mg · g–1).  相似文献   

14.
Barium nitrate is one of the least soluble metal nitrate phases normally present in the nitric acid based highly active liquor, which will require removal from highly active storage tanks during post-operational clean-out of the Sellafield nuclear site. Laboratory experiments have been carried out to determine the dissolution rate of barium nitrate in water and weak acid solutions. The influence of agitation (solutions being stirred by a paddle at a rate of 0, 40 and 60 revolutions per minute (rpm)), dissolution temperature (20–40 °C), nitric acid concentration (0–1 mol·L?1) and additional solution nitrate {from Al(NO3)3} concentration (0–0.5 mol·L?1) were investigated. An inscribed central composite experimental design was used for each level of stirred agitation (including unstirred), which allowed non-linear trends and interactions among variables to be statistically determined without carrying out a full factorial experimental array. It was found that the dissolution rate was faster for higher temperature, lower nitric acid concentrations and lower nitrate concentrations. Comparing experiments under like conditions, the barium nitrate dissolution rates at an agitation rate of 40 rpm were on average 56% of those at 60 rpm, while the dissolution rate in the unstirred experiments were on average 0.8% of those at 60 rpm, i.e. two orders of magnitude lower. Hence, the transition from stagnant solution conditions with diffusion controlled transfer of solute from the solid interface to agitated solution conditions was found to be significant. Statistical analysis of the data allowed the derivation of a predictive dissolution rate equation.  相似文献   

15.
The dissolution and the kinetics of dissolution of cooper(II) oxide in water saturated by sulphur dioxide has been studied. In the experiments, the particle size, the flow rate of the gas, the solid to liquid ratio, and the reaction temperature have been chosen as parameters, while the stirring rate was held constant. As a result of present experiments, it was observed that the decrease of the particle size, the solid to liquid ratio, and an increase of the reaction temperature increased the dissolution rate. It was also observed that the flow rate of sulphur dioxide in the range of its flow rate values did not affect the dissolution rate. The reaction kinetics of copper(II) oxide according to the heterogeneous reaction models was examined and it was found that the dissolution rate was controlled by chemical reaction. The calculated activation energy is 66.50 kJmol?1. © 1994 John Wiley & Sons, Inc.  相似文献   

16.
Thermal decomposition behavior and non‐isothermal decomposition reaction kinetics of nitrate ester plasticized polyether NEPE propellant containing ammonium dinitramide (ADN), which is one of the most important high energetic materials, were investigated by DSC, TG and DTG at 0.1 MPa. The results show that there are four exothermic peaks on DTG curves and four mass loss stages on TG curves at a heating rate of 2.5 K·min?1 under 0.1 MPa, and nitric ester evaporates and decomposes in the first stage, ADN decomposes in the second stage, nitrocellulose and cyclotrimethylenetrinitramine (RDX) decompose in the third stage, and ammonium perchlorate decomposes in the fourth stage. It was also found that the thermal decomposition processes of the NEPE propellant with ADN mainly have two mass loss stages with an increase in the heating rate, that is the result of the decomposition heats of the first two processes overlap each other and the mass content of ammonium perchlorate is very little which is not displayed in the fourth stage at the heating rate of 5, 10, and 20 K·min?1 probably. It was to be found that the exothermal peak temperatures increased with an increase in the heating rate. The reaction mechanism was random nucleation and then growth, and the process can be classified as chemical reaction. The kinetic equations of the main exothermal decomposition reaction can be expressed as: dα/dt=1012.77(3/2)(1?α)[?ln(1?α)]1/3 e?1.723×104/T. The critical temperatures of the thermal explosion (Tbe and Tbp) obtained from the onset temperature (Te) and the peak temperature (Tp) on the condition of β→0 are 461.41 and 458.02 K, respectively. Activation entropy (ΔS), activation enthalpy (ΔH), and Gibbs free energy (ΔG) of the decomposition reaction are ?7.02 J·mol?1·K?1, 126.19 kJ·mol?1, and 129.31 kJ·mol?1, respectively.  相似文献   

17.
The results of experimental investigation on the study of dissolution kinetics of a Nigerian galena ore in hydrochloric acid solution were discussed. The influence of acid concentration, temperature, particle size, stirring speed and solid/liquid ratio on the extent of dissolution was examined. The elemental analysis by XRF showed that the galena ore is composed mainly of PbS with metals such as Sn, Fe and Zn occurring as minor elements and Mn, Rb, Sr and Nb as traces. The XRD analysis indicated galena as the dominant mineral phase, with the presence of associated minerals, such as α-quartz (SiO2), sphalerite (ZnS), cassiterite (SnO2), pyrite (FeS2) and manganese oxide (MnO2).Results of leaching studies showed that galena dissolution in HCl solution increases with increasing acid concentration and temperature; while it decreases with particle diameter and solid/liquid ratio at a fixed stirring rate of 450 rpm. The study showed that 94.8% of galena was dissolved by 8.06 M HCl at 80 °C within 120 min with initial solid/liquid ratio of 10 g/L. The corresponding activation energy, Ea was calculated to be 38.74 kJ/mol. Other parameters such as reaction order, Arrhenius constants, reaction and dissociation constants were calculated to be 0.28, 73.69 s?1, 1.73 ± 0.13 × 103 and 1.37 ± 0.024 × 104 mol L?1 s?1, respectively. The mechanism of dissolution of galena was established to follow the shrinking core model for the diffusion controlled mechanism with surface chemical reaction as the rate controlling step for the dissolution process. Finally, the XRD analysis of the post-leaching residue showed the presence of elemental sulphur, lead chloride and α-quartz.  相似文献   

18.
The kinetics of the reductive stripping of plutonium(IV) by dihydroxyurea (DHU) in 30% TBP/kerosene-HNO3 system was studied with a constant interfacial area cell. The stripping rate of plutonium(IV) increases with the increase of the stirring speed of two phases and the interfacial area. The activation energy of this process is 28.4 kJ/mol. Under the given experimental conditions, the mass transfer of Pu is not controlled by redox reaction, but controlled by molecular diffusion from the organic phase to organic film layer and from the aqueous film layer to aqueous phase. The rate equation of reductive stripping (process is controlled by diffusion) was obtained as: r 0 = k′[Pu(IV)]0[DHU]a 0.16[HNO3]a −0.34. The rate constant k′ is (5.0±0.4)·10−2 (mol/L)0.18·min−1 at 18.0°C.  相似文献   

19.
The kinetics of the oxidation of hydrogen iodide (HI + O2) at low temperature (414–499 K) in the gas phase by the method of iodination kinetics is complicated by a heterogeneous reaction between hydrogen iodide and oxygen. Present work leads to an upper limit for the bimolecular rate constant k1 for the first and rate-determining step (1) These data are combined with an estimated A factor A1 = 109.3±0.2 L/mol·s (assuming a tight linear I···H···O— transition state), to calculate the lower limit of the activation energy for the forward reaction E1. This leads to a minimum value for the heat of formation of the HO2 radical, ΔHf298°(HO2) < 3.0 kcal/mol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号