首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Developing mixed-anion semiconductors for solar fuel production has inspired extensive interest, but the nitrohalide-based photocatalyst is still in shortage. Here we report a layered nitro-halide β-ZrNBr with a narrow band gap of ca. 2.3 eV and low defect density to exhibit multifunctionalities for photocatalytic water reduction, water oxidation and CO2 reduction under visible-light irradiation. As confirmed by the results of electron paramagnetic resonance (EPR) and density functional theory (DFT) calculations, the formation of anion vacancies in the nitro-halide photocatalyst was inhibited due to its relatively high formation energy. Furthermore, performance of β-ZrNBr can be effectively promoted by a simple exfoliation into nanosheets to shorten the carrier transfer distance as well as to promote charge separation. Our work extends the territory of functional photocatalysts into the nitro-halide, which opens a new avenue for fabricating efficient artificial photosynthesis.  相似文献   

2.
Photocatalytic processes triggered by graphene-based photocatalysts under solar light have sparked interest as a new sort of instrument for solar chemical synthesis. Herein we investigated self-assembled graphene quantum dots (GQDs)/NiSe-NiO composite photocatalyst for organic transformation as well as dye degradation. The synthesized GQDs/NiSe-NiO composite photocatalyst has an excellent suitable band gap, high molar extinction coefficient, low toxicity and chemical/thermal stability. The GQDs/NiSe-NiO composite photocatalyst emerges as a new standard for sulfur oxidation and dye degradation reactions under homemade LED light with high yield.  相似文献   

3.
Photocatalysis is a defendable manner for production of several organic chemicals, energy and its storage from solar energy. For the evolution of metal free, cost-effective catalyst a 2D composite has been appear as a photocatalyst. Here, we had reported the synthesis of a light harvesting composite as a photocatalyst which was assembled by a poly-condensation mechanism between graphitic carbon nitride and tetrakis(4-nitrophenyl) porphyrin and the resulting composite manifest the excellent light harvesting properties, suitable energy band and low charge recombination. The photocatalyst [(NO2)4TPP@g-C3N4] enables the efficient photocatalytic production of nicotinamide adenine dinucleotide (NADH) from consumed NAD+ also the production of organic chemicals like 4-methoxybenzylimines from 4-methoxybenzylamines. The photocatalytic efficiency of the photocatalyst was estimated by the percentage of NADH regeneration and the percentage yield of organic transformations. It shows the tetrakis(4-nitrophenyl) porphyrin could enhance the charge transfer capacity of graphitic carbon nitride which shows excellent photocatalysis activities and organic transformations.  相似文献   

4.
Current energy crisis and environmental issues, including depletion of fossil fuels, rapid industrialization, and undesired CO2 emission resulting in global warming has created havoc for the global population and significantly affected the quality of life. In this scenario the environmental problems in the forefront of research priorities. Development of renewable energy resources particularly the efficient conversion of solar light to sustainable energy is crucial in addressing environmental problems. In this regard, the synthesis of semiconductors-based photocatalysts has emerged as an effective tool for different photocatalytic applications and environmental remediation. Among different photocatalyst options available, graphene and graphene derivatives such as, graphene oxide (GO), highly reduced graphene oxide (HRG), and doped graphene (N, S, P, B-HRG) have become rising stars on the horizon of semiconductors-based photocatalytic applications. Graphene is a single layer of graphite consisting of a unique planar structure, high conductivity, greater electron mobility, and significantly very high specific surface area. Besides, the recent advancements in synthetic approaches have led to the cost-effective production of graphene-based materials on a large-scale. Therefore, graphene-based materials have gained considerable recognition for the production of semiconducting photocatalysts involving other semiconducting materials. The graphene-based semiconductors photocatalysts surpasses electron-holes pairs recombination rate and lowers the energy band gap by tailoring the valence band (VB) and conduction band (CB) leading to the enhanced photocatalytic performance of hybrid photocatalysts. Herein, we have summarized the latest developments in designing and fabrication of graphene-based semiconducting photocatalysts using a variety of commonly applied methods such as, post-deposition methods, in-situ binding methods, hydrothermal and/or solvothermal approaches. In addition, we will discuss the photocatalytic properties of the resulting graphene-based hybrid materials for various environmental remediation processes such as; (i) clean H2 fuel production, photocatalytic (ii) pollutants degradation, (iii) photo-redox organic transformation and (iv) photo-induced CO2 reduction. On the whole, by the inclusion of more than 300 references, this review possibly covered in detail the aspects of graphene-based semiconductor photocatalysts for environmental remediation processes. Finally, the review will conclude a short summary and discussion about future perspectives, challenges and new directions in these emerging areas of research.  相似文献   

5.
Producing chemical fuels from sunlight enables a sustainable way for energy consumption.Among various solar fuel generation approaches,photocatalytic CO2 reduction has the advantages of simple structure,mild reaction condition,directly reducing carbon emissions,etc.However,most of the current photocatalytic systems can only absorb the UV-visible spectrum of solar light.Therefore,finding a way to utilize infrared light in the photocatalytic system has attracted more and more attention.Here,a Z-scheme In2S3-TiO2 was constructed for CO2 reduction under concentrated natural sunlight.The infrared light was used to create a high-temperature environment for photocatalytic reactions.The evolution rates of H2,CO,and C2H5OH reached 262.2,73.9,and 27.56μmol?h-1?g-1,respectively,with an overall solar to fuels efficiency of 0.002%.This work provides a composite photocatalyst towards the utilization of full solar light spectrum,and could promote the research on photocatalytic CO2 reduction.  相似文献   

6.
Water oxidation is a bottleneck in artificial photosynthesis that impedes its practicality for solar energy conversion and utilization. It is highly desired to significantly improve the efficacy of the existing catalysts or to rationally design new catalysts with improved performance. We report a novel conjugated and sulfone containing polyimide as a metal-free photocatalyst synthesized via a two-step method: (i) synthesis of precursor poly(amic acid) (PAA) (ii) solvothermal synthesis of polyimide through thermal imidization. The synthesis of the polyimide photocatalyst was demonstrated by the amide linkage in the FTIR spectrum. The obtained photocatalyst was semicrystalline in nature and possessed sheet-like morphology as illustrated by the diffraction pattern and the electron micrographic images, respectively. The thermogravimetric analysis of the polyimide nanosheets validated a thermally stable structure. The DFT calculations were performed which showed a suitable HOMO band position, favorable for water oxidation. The photoelectrocatalytic (PEC) performance of the polyimide nanosheets evaluated by studying water oxidation reaction without any sacrificial agent under 1-SUN showed enhanced PEC performance and good stability towards water oxidation at 0 V versus SCE.  相似文献   

7.
大气中CO2含量的增加已对气候和环境造成巨大影响,要实现碳中和的目标,目前迫切需要开发CO2高效利用技术.太阳能热化学循环CO2裂解可充分利用太阳全光谱能量将CO2转化为CO,从而实现太阳能到化学能的存储.进一步引入CH4作为氧载体的还原气体,不仅能有效降低反应温度、提高氧载体供氧能力,还能联产高质量合成气,为生产甲醇和乙酸及费托合成提供原料,达到一举多得的效果.铁基材料因其成本低、环境友好等优点受到广泛关注,但普通铁氧化物(如Fe3O4,FeO)催化甲烷活化性能差,且受热力学限制,CO2分解转化率较低.本文制备了一种FeNi合金修饰的钙钛矿复合材料为氧载体(FeNi-LFA),其在两步法太阳能热化学CO2裂解反应中展现出较好的反应活性和循环稳定性.在反应温度为850℃时,CO2分解速率达到381 mL g?1 min?1(STP),转化率达到99%,氧化后材料可在恒温条件下经甲烷还原再生,合成气收率达96%以上,30次循环性能无明显下降.本文还结合高分辨透射电子显微镜(HRTEM),原位X射线衍射(XRD),原位扫描透射电镜(STEM)和57Fe穆斯堡尔谱等表征深入研究了热化学循环反应中氧载体的结构演变,并借助密度泛函理论(DFT)计算,研究其构效关系.HRTEM及EDS结果表明,FeNi-LFA中FeNi合金颗粒尺寸为20~50 nm,且合金颗粒部分嵌入到钙钛矿基体中,从而显著增强了金属-载体间相互作用.为了研究FeNi-LFA氧载体动态构造演化过程,采用XRD对氧载体反应中衍射峰变化进行研究.当FeNi-LFA暴露于CO2中,FeNi合金的特征衍射峰向高角度偏移,同时,La2O3衍射峰减弱.钙钛矿衍射峰增强,说明氧化气氛中,FeNi合金发生Fe脱合金过程,而氧化后的铁离子能与La2O3快速反应生成钙钛矿氧化物.当反应气氛切换成CH4后,钙钛矿衍射峰强度降低,La2O3信号相应增强,说明钙钛矿中铁离子脱溶析出,使材料在恒温条件下完成再生.进一步利用STEM对FeNi-LFA的结构演变中的元素迁移进行研究发现,新鲜样品中,FeNi合金与钙钛矿载体接触密切,FeNi合金周围仅有少量铁分布,在FeNi合金与氧化物载体的界面处,Fe信号强度有所下降,表明FeNi合金嵌入在富含La2O3的钙钛矿载体中,这与HRTEM表征结果一致.在CO2裂解过程中,FeNi合金中的Fe信号明显降低,并出现金属Ni颗粒,说明Fe原子从合金中脱出.此外,在Ni颗粒表面没有出现FeOx等钝化层,说明氧化后的Fe可与载体快速反应,抑制了钝化层的形成,从而有利于提高CO2裂解转化率.相应57Fe穆斯堡尔谱结果表明,FeNi合金中的Fe与La2O3反应转化为LaFeO3,与XRD结果一致.对反应过程进行DFT计算,发现FeNi/La2O3界面很容易发生CO2吸附和活化,其反应活性远高于FeNi合金.同样地,氧化后形成的Ni/LaFeO3(110)界面有利于CH4吸附和C?H键解离,有利于Fe离子还原和FeNi合金再生.两步法太阳能热化学CO2裂解工艺经济可行性的一个关键指标是太阳能利用效率,热力学分析结果表明,即使在没有热回收的情况下,该过程的理论太阳能利用效率可达58%,当显热回收效率为90%时,太阳能利用效率可达78%.综上,本文发展了一种新型高效CO2热化学裂解氧载体,实现铁在钙钛矿-合金中的定向可逆迁移,通过勒沙特列原理显著提高了CO2分解转化率及反应活性,同时可产生高质量合成气.通过构建复合氧载体,实现Fe离子的原位稳定作为一种新型的氧载体设计策略,可推广应用至其他氧载体的设计开发,从而有效提高太阳能燃料生产效率.  相似文献   

8.
长期以来,陆地、大气和海洋之间的碳循环维持了大自然碳平衡.随着密集人类活动和高度工业发展,碳燃料、碳化学品和碳材料广泛应用于各个领域,导致碳排放过量,碳平衡已被严重破坏,碳污染已成为一个严峻问题.例如,持久性有机污染物和挥发性有机化合物过量排放到环境中,威胁着人类的健康和生态平衡.人们陆续开发出各种先进的环境技术,如微生物分解,去除空气和水中的碳基污染物,将有毒有害的有机化合物转化为无害CO2.但是,CO2本身是大气中的主要温室气体,它在大气中的浓度早超过了天然碳循环所能维持的环境自洁净能力.基于先进催化技术建立人工碳循环,将有机污染物矿化生成的CO2进一步转化为有价值的有机化学品(如太阳能燃料)是一种理想的低碳方法.光合作用是自然碳循环中核心过程之一,是降低大气中CO2浓度的关键.受到光合作用启发,科学家们积极开发人工光合成技术推动CO2资源化.人工光合成技术本质上基于半导体光催化过程.半导体光催化过程具有双重作用.一方面,基于有氧光催化氧化过程,有机污染物可以矿化生成无毒CO2.另一方面,基于缺氧光催化还原过程,CO2可以转化为碳氢化合物太阳能燃料.理论上,结合上述两个过程,为建立人工碳循环奠定基础,但是,至今很少有人成功建立有氧氧化-无氧还原串联光催化工艺,实现人工碳循环.难点在于有机污染物的有氧氧化反应和CO2的无氧还原反应的操作条件与反应机制是完全不同的,目前缺乏同时适用于上述两种反应的双功能光催化剂.本文成功构建了具有双功能的g-C3N4/Bi/BiVO4三元复合光催化剂,它不仅在降解有机污染物方面表现出优异的有氧光催化氧化性能(以降解染料罗丹明B为例),而且还表现出优异的缺氧CO2光催化还原性能.此外,基于“一锅法”厌氧耦合氧化-还原反应,g-C3N4/Bi/BiVO4三元复合光催化剂成功实现同步罗丹明B降解与太阳能燃料生成,构建了从毒害有机污染物到高品质太阳燃料的碳循环.结合牺牲剂实验分析与密度泛函理论理论计算,作者提出g-C3N4/Bi/BiVO4复合光催化剂的双功能性与g-C3N4与BiVO4界面内建S-型复合异质结有关.S-型复合异质结既促进界面电荷转移与分离,又维持了最佳电荷氧化还原电位.此外,S型g-C3N4/Bi/BiVO4复合光催化剂中原位生成的具有等离子体效应的Bi纳米颗粒具有双重作用,既促进界面电荷定向转移,又促进可见光吸收.本文开发的新型双功能S-型g-C3N4/Bi/BiVO4复合光催化剂系统为进一步开发集成式有氧-缺氧光催化碳循环反应系统奠定基础.  相似文献   

9.
Efficient harvesting of unlimited solar energy and its conversion into valuable chemicals is one of the ultimate goals of scientists. With the ever‐increasing concerns about sustainable growth and environmental issues, numerous efforts have been made to develop artificial photosynthetic process for the production of fuels and fine chemicals, thus mimicking natural photosynthesis. Despite the research progress made over the decades, the technology is still in its infancy because of the difficulties in kinetic coupling of whole photocatalytic cycles. Herein, we report a new type of artificial photosynthesis system that can avoid such problems by integrally coupling biocatalytic redox reactions with photocatalytic water splitting. We found that photocatalytic water splitting can be efficiently coupled with biocatalytic redox reactions by using tetracobalt polyoxometalate and Rh‐based organometallic compound as hole and electron scavengers, respectively, for photoexcited [Ru(bpy)3]2+. Based on these results, we could successfully photosynthesize a model chiral compound (L ‐glutamate) using a model redox enzyme (glutamate dehydrogenase) upon in situ photoregeneration of cofactors.  相似文献   

10.
Photoelectrochemical reduction of CO(2) to HCOO(-) (formate) over p-type InP/Ru complex polymer hybrid photocatalyst was highly enhanced by introducing an anchoring complex into the polymer. By functionally combining the hybrid photocatalyst with TiO(2) for water oxidation, selective photoreduction of CO(2) to HCOO(-) was achieved in aqueous media, in which H(2)O was used as both an electron donor and a proton source. The so-called Z-scheme (or two-step photoexcitation) system operated with no external electrical bias. The selectivity for HCOO(-) production was >70%, and the conversion efficiency of solar energy to chemical energy was 0.03-0.04%.  相似文献   

11.
本文综述了自20世纪80年代以来基于钴配合物的均相光催化二氧化碳还原研究成果,以钴配合物催化剂的结构分类并结合时间顺序回顾了近四十年来该领域的发展轨迹,重点总结了用于光催化二氧化碳还原研究的金属钴配合物的结构、催化活性以及光催化体系的构成等特点,分析了该领域面临的挑战并展望了未来的发展方向。  相似文献   

12.
以半导体等为催化剂,在太阳能作用下将CO2和H2O转化为可再生燃料与氧气的“人工光合作用”有望同时解决目前面临的严峻能源和环境问题,因而备受关注.但半导体催化剂光谱响应范围较窄、表面反应动力学缓慢,从而导致目前仍无法获得可观的太阳能-燃料转换效率.已有很多研究采用了晶面调控、元素掺杂和异质结构建等方法,以提高半导体光催化剂的太阳能-燃料转换效率,但效果仍不令人满意,主要原因是半导体光催化剂很难在吸收带边-氧化还原能力和活性-稳定性这两种关系中取得较好的平衡.此外,光催化反应中的动力学也是主要问题之一,尤其在人工光合作用反应中,CO2还原半反应和H2O氧化半反应的动力学均较困难, 这已成为共识, 而解决这个问题, 将有助于我们从一新的角度理解光催化过程, 从而提升光催化反应性能.本文以Au NP/金红石为模型催化剂, 纯金红石为参照, 证明了存在太阳光中的红外光致热和可见光诱导的等离激元热效应等两类光致热效应, 它们均可以促进人工光合作用反应. 研究发现, 人工光合作用反应与其他许多化学反应一样, 表观活化能为正, 从而表明动力学因素在该反应中起着重要作用. 此外, 根据不同反应温度下的结果, 通过计算Au NP/金红石和纯金红石上生成CO和CH4的表观活化能, 发现在这二种样品上CH4的表观活化能均高于CO, 这就从动力学上解释了热力学上更容易得到的CH4在绝大多光催化CO2还原反应中的产率均低于CO. 此外, 无论是对于CO还是CH4, Au NP/金红石的催化表观活化能均低于纯金红石的. 因此, 本文从实验上提供了贵金属纳米粒子改善人工光合作用动力学的实验证据,并从动力学角度解释了人工光合作用反应中的活性和选择性问题. 本研究证明了动力学因素在光催化反应, 尤其是人工光合作用反应中的重要性, 并提出了从动力学角度提升人工光合作用反应的新方法, 即利用太阳光的光致热效应加速反应, 这不仅有助于提升太阳能转化效率, 也有望减少反应设备成本, 从而促进其大规模应用.  相似文献   

13.
Graphene-based composites   总被引:8,自引:0,他引:8  
  相似文献   

14.
The paper shortly reviews the basic direct approaches applied in searching for viable solutions to solar fuel production. These are generally distinguished in molecular and semiconductor(non-molecular)systems, however, hybrid strategies, proposed recently, have also been included. The most promising efforts are considered, highlighting key aspects and emerging critical issues. Special attention is paid to aspects such as electrode architecture, device design, and main differences in the scientific vision and challenges to directly produce solar fuels. This overview could be useful to orientate the readers in the wide panorama of research activities concerning water splitting, natural and artificial photosynthesis, and solar fuel production through the identification of common aspects, specialties and potentialities of the many initiatives and approaches that are developing worldwide in this field with the final aim to meet world energy demand.  相似文献   

15.
面向氢能源、燃料电池和二氧化碳减排的制氢途径的选择   总被引:3,自引:1,他引:2  
对氢气的多种制造途径加以探讨,也涉及到氢能的利用、燃料电池以及二氧化碳的减排。需要指出的是氢气并非能源,而只是能量的载体。 所以氢能的发展首先需要制造氢气。对于以化石燃料为基础的制氢过程,如煤的气化和天然气重整,需要开发更经济和环境友好的新过程,在这些新过程中要同时考虑二氧化碳的有效收集和利用问题。对于煤和生物质,在此提出了一种值得进一步深入研究的富一氧化碳气化制氢的概念。对于以氢为原料的质子交换膜燃料电池系统,必须严格控制制备的氢气中的一氧化碳和硫化氢;对于以烃类为原料的固体氧化物燃料电池,制备的合成气中的硫也需严格控制。然而,传统的脱硫方法并不适宜于这种用于燃料电池的极高深度的氢气和合成气的脱硫。氢能和燃料电池的发展是与控制二氧化碳排放紧密相关的。  相似文献   

16.
考察了超临界条件下合成TiO2基光催化剂的性质,尤其是在超临界CO2下得到的分散在TiO2上Pt的特性,并与商品化TiO2性能进行了比较.另外,所得催化剂的光催化活性用CO2光还原制太阳能燃料进行了评价.结果表明,该催化剂可得到具有比商用TiO2更好或类似的性能(高比表面积、结晶度、表面羟基浓度,大的孔容、增强的可见光吸收、高的甲烷生成速率)而用于CO2还原制备燃料的反应中.这可归因于该催化剂超临界介质合成过程.  相似文献   

17.
Molecular systems that follow the functional principles of photosynthesis have attracted increasing attention as a method for the direct production of solar fuels. This could give a major carbon-neutral energy contribution to our future society. An outstanding challenge in this research is to couple the light-induced charge separation (which generates a single electron-hole pair) to the multielectron processes of water oxidation and fuel generation. New design considerations are needed to allow for several cycles of photon absorption and charge separation of a single artificial photosystem. Here we demonstrate a molecular system with a regenerative photosensitizer that shows two successive events of light-induced charge separation, leading to high-yield accumulation of redox equivalents on single components without sacrificial agents.  相似文献   

18.
The design and synthesis of molecular and supramolecular multiredox systems have been summarized. These systems are of great importance as they can be employed in the next generation of materials for energy storage, energy transport, and solar fuel production. Nature provides guiding pathways and insights to judiciously incorporate and tune the various molecular and supramolecular design aspects that result in the formation of complex and efficient systems. In this review, we have classified molecular multiredox systems into organic and organic-inorganic hybrid systems. The organic multiredox systems are further classified into multielectron acceptors, multielectron donors and ambipolar molecules. Synthetic chemists have integrated different electron donating and electron withdrawing groups to realize these complex molecular systems. Further, we have reviewed supramolecular multiredox systems, redox-active host-guest recognition, including mechanically interlocked systems. Finally, the review provides a discussion on the diverse applications, e. g. in artificial photosynthesis, water splitting, dynamic random access memory, etc. that can be realized from these artificial molecular or supramolecular multiredox systems.  相似文献   

19.
Semiconductor photocatalysis has great potential in the fields of solar fuel production and environmental remediation. Nevertheless, the photocatalytic efficiency still constrains its practical production applications. The development of new semiconductor materials is essential to enhance the solar energy conversion efficiency of photocatalytic systems. Recently, the research on enhancing the photocatalytic performance of semiconductors by introducing bismuth (Bi) has attracted widespread attention. In this review, we briefly overview the main synthesis methods of Bi/semiconductor photocatalysts and summarize the control of the micromorphology of Bi in Bi/semiconductors and the key role of Bi in the catalytic system. In addition, the promising applications of Bi/semiconductors in photocatalysis, such as pollutant degradation, sterilization, water separation, CO2 reduction, and N2 fixation, are outlined. Finally, an outlook on the challenges and future research directions of Bi/semiconductor photocatalysts is given. We aim to offer guidance for the rational design and synthesis of high-efficiency Bi/semiconductor photocatalysts for energy and environmental applications.  相似文献   

20.
Considering light absorption by narrowing the band gap and gas capture by the mesostructure and basicity of material, an efficient artificial photosynthesis system was constructed based on a mesoporous ZnAl(2)O(4)-modified ZnGaNO photocatalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号