首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Solid-state (13)C magic angle spinning (MAS) NMR spectroscopy investigations identified zinc methyl species, formate species, and methoxy species as C(1) surface species formed in methane activation on the zeolite Zn/H-ZSM-5 catalyst at T≤573 K. These C(1) surface species, which are possible intermediates in further transformations of methane, were prepared separately by adsorption of (13)C-enriched methane, carbon monoxide, and methanol onto zinc-containing catalysts, respectively. Successful isolation of each surface species allowed convenient investigations into their chemical nature on the working catalyst by solid-state (13)C MAS NMR spectroscopy. The reactivity of zinc methyl species with diverse probe molecules (i.e., water, methanol, hydrochloride, oxygen, or carbon dioxide) is correlated with that of organozinc compounds in organometallic chemistry. Moreover, surface formate and surface methoxy species possess distinct reactivity towards water, hydrochloride, ammonia, or hydrogen as probe molecules. To explain these and other observations, we propose that the C(1) surface species interconvert on zeolite Zn/H-ZSM-5. As implied by the reactivity information, potential applications of methane co-conversion on zinc-containing zeolites might, therefore, be possible by further transformation of these C(1) surface species with rationally designed co-reactants (i.e., probe molecules) under optimized reaction conditions.  相似文献   

2.
By a systematic examination on Na(H2O)n, with n = 4-7, 9, 10, and 15, we demonstrate that a hydrogen loss reaction can be initiated by a single sodium atom with water molecules. This reaction is similar to the well-known size-dependent intracluster hydrogen loss in Mg+(H2O)n, which is isoelectronic to Na(H2O)n. However, with one less charge on Na(H2O)n than that on Mg+(H2O)n, the hydrogen loss for Na(H2O)n is characterized by a higher barrier and a more flexible solvation shell around the metal ion, although the reaction should be accessible, as the lowest barrier is around 8 kcal/mol. Interestingly, the hydroxide ion OH- produced in the process is stabilized by the solvation of H2O molecules and the formation of an ion pair Na+(H2O)4(H2O)n-l-4[OH-(H2O)l]. The activation barrier is reduced as the unpaired electron in Na(H2O)n moves to higher solvation shells with increasing cluster size, and the reaction is not switched off for larger clusters. This is in sharp contrast to the reaction for Mg+(H2O)n, in which the OH- ion is stabilized by direct coordination with Mg2+ and the reaction is switched off for n > 17, as the unpaired electron moved to higher solvation shells. Such a contrast illustrates the important link between microsolvation environment and chemical reactivity in solvation clusters.  相似文献   

3.
Recent progress reveals that, in the methanol-to-olefin (MTO) process on acidic zeolites, the conversion of an equilibrium mixture of methanol and DME is dominated by a "hydrocarbon pool" mechanism. However, the initial C-C bond formation, that is, the chemistry during the kinetic "induction period" leading to the reactive hydrocarbon pool, still remains unclear. With the application of a stopped-flow protocol, in the present work, pure surface methoxy groups [SiO(CH(3))Al] were prepared on various acidic zeolite catalysts (H-Y, H-ZSM-5, H-SAPO-34) at temperatures lower than 473 K, and the further reaction of these methoxy species was investigated by in situ (13)C MAS NMR spectroscopy. By using toluene and cyclohexane as probe molecules which are possibly involved in the MTO process, we show the high reactivity of surface methoxy species. Most importantly, the formation of hydrocarbons from pure methoxy species alone is demonstrated for the first time. It was found that (i) surface methoxy species react at room temperature with water to methanol, indicating the occurrence of a chemical equilibrium between these species at low temperatures. In the presence of aromatics and alkanes, (ii) the reactivity of surface methoxy groups allows a methylation of these organic compounds at reaction temperatures of ca. 433 and 493 K, respectively. In the absence of water and other organic species, that is, under flow conditions and on partially methylated catalysts, (iii) a conversion of pure methoxy groups alone to hydrocarbons was observed at temperatures of T >/= 523 K. This finding indicates a possible formation of the first hydrocarbons during the kinetic induction period of the MTO process via the conversion of pure surface methoxy species (case iii). After the first hydrocarbons are formed, or in the presence of a small amount of organic impurities, surface methoxy groups contribute to a further methylation of these organic compounds (case ii), leading to the formation of a reactive hydrocarbon pool which eventually plays an active role in the steady state of the MTO process at reaction temperatures of T >/= 573 K.  相似文献   

4.
The preferential solvation of solutes in mixed solvent systems is an interesting phenomenon that plays important roles in solubility and kinetics. In the present study, solvation of a lithium atom in aqueous ammonia solution has been investigated from first principles molecular dynamics simulations. Solvation of alkali metal atoms, like lithium, in aqueous and ammonia media is particularly interesting because the alkali metal atoms release their valence electrons in these media so as to produce solvated electrons and metal counterions. In the present work, first principles simulations are performed employing the Car-Parrinello molecular dynamics method. Spontaneous ionization of the Li atom is found to occur in the mixed solvent system. From the radial distribution functions, it is found that the Li(+) ion is preferentially solvated by water and the coordination number is mostly four in its first solvation shell and exchange of water molecules between the first and second solvation shells is essentially negligible in the time scale of our simulations. The Li(+) ion and the unbound electron are well separated and screened by the polar solvent molecules. Also the unbound electron is primarily captured by the hydrogens of water molecules. The diffusion rates of Li(+) ion and water molecules in its first solvation shell are found to be rather slow. In the bulk phase, the diffusion of water is found to be slower than that of ammonia molecules because of strong ammonia-water hydrogen bonds that participate in solvating ammonia molecules in the mixture. The ratio of first and second rank orientational correlation functions deviate from 3, which suggests a deviation from the ideal Debye-type orientational diffusion. It is found that the hydrogen bond lifetimes of ammonia-ammonia pairs is very short. However, ammonia-water H-bonds are found to be quite strong when ammonia acts as an acceptor and these hydrogen bonds are found to live longer than even water-water hydrogen bonds.  相似文献   

5.
The in situ preparation and isolation of surface methoxy species on acidic zeolites are followed by further investigations of their reactivity in heterogeneously catalyzed reactions. For the first time, the following solid-state NMR evidence for the high reactivity of surface methoxy species has been obtained: (i) Surface methoxy species react readily with ammonia on acidic zeolites at room temperature, by which methylamines and methylammonium cations are formed. (ii) The transformation of surface methoxy species to other alkoxy species can be achieved by the reaction of surface methoxy species and corresponding alkyl halides on acidic zeolites. (iii) Surface methoxy species react readily with hydrochloride, giving methyl chloride as the sole product. (iv) The classic Koch carbonylation reaction and Ritter reaction in solution can be performed with surface methoxy species on acidic zeolites. (v) Carbon monoxide and carbon dioxide are produced by the oxidation of surface methoxy species in the presence of oxygen. The stability and reactivity of surface methoxy species are discussed in comparison with other surface alkoxy species (> C(1) species).  相似文献   

6.
With the large dye molecules employed in typical studies of solvation dynamics, it is often difficult to separate the intramolecular relaxation of the dye from the relaxation associated with dynamic solvation. One way to avoid this difficulty is to study solvation dynamics using an atom as the solvation probe; because atoms have only electronic degrees of freedom, all of the observed spectroscopic dynamics must result from motions of the solvent. In this paper, we use ultrafast transient absorption spectroscopy to investigate the solvation dynamics of newly created sodium atoms that are formed following the charge transfer to solvent (CTTS) ejection of an electron from sodium anions (sodide) in liquid tetrahydrofuran (THF). Because the absorption spectra of the sodide reactant, the sodium atom, and the solvated electron products overlap, we first examined the dynamics of the ejected CTTS electron in the infrared to build a detailed model of the CTTS process that allowed us to subtract the spectroscopic contributions of the sodide bleach and the solvated electron and cleanly reveal the spectroscopy of the solvated atom. We find that the neutral sodium species created following CTTS excitation of sodide initially absorbs near 590 nm, the position of the gas-phase sodium D-line, suggesting that it only weakly interacts with the surrounding solvent. We then see a fast solvation process that causes a red-shift of the sodium atom's spectrum in approximately 230 fs, a time scale that matches well with the results of MD simulations of solvation dynamics in liquid THF. After the fast solvation is complete, the neutral sodium atoms undergo a chemical reaction that takes place in approximately 740 fs, as indicated by the observation of an isosbestic point and the creation of a species with a new spectrum. The spectrum of the species created after the reaction then red-shifts on a approximately 10-ps time scale to become the equilibrium spectrum of the THF-solvated sodium atom, which is known from radiation chemistry experiments to absorb near approximately 900 nm. There has been considerable debate as to whether this 900-nm absorbing species is better thought of as a solvated atom or a sodium cation:solvated electron contact pair, (Na+,e-). The fact that we observe the initially created neutral Na atom undergoing a chemical reaction to ultimately become the 900-nm absorbing species suggests that it is better assigned as (Na+,e-). The approximately 10-ps solvation time we observe for this species is an order of magnitude slower than any other solvation process previously observed in liquid THF, suggesting that this species interacts differently with the solvent than the large molecules that are typically used as solvation probes. Together, all of the results allow us to build the most detailed picture to date of the CTTS process of Na- in THF as well as to directly observe the solvation dynamics associated with single sodium atoms in solution.  相似文献   

7.
8.
Methanol clusters are generated in a continuous He-seeded supersonic expansion and doped with sodium atoms in a pick-up cell. By this method, clusters of the type Na(CH(3)OH)(n) are formed and subsequently photoionized by applying a tunable dye-laser system. The microsolvation process of the Na 3s electron is studied by determining the ionization potentials (IPs) of these clusters size-selectively for n = 2-40. A decrease is found from n = 2 to 6 and a constant value of 3.19 +/- 0.07 eV for n = 6-40. The experimentally-determined ionization potentials are compared with ionization potentials derived from quantum-chemical calculations, assuming limiting vertical and adiabatic processes. In the first case, energy differences are calculated between the neutral and the ionized cationic clusters of the same geometry. In the second case, the ionized clusters are used in their optimized relaxed geometry. These energy differences and relative stabilities of isomeric clusters vary significantly with the applied quantum-chemical method (B3LYP or MP2). The comparison with the experiment for n = 2-7 reveals strong variations of the ionization potential with the cluster structure indicating that structural diversity and non-vertical pathways give significant signal contributions at the threshold. Based on these findings, a possible explanation for the remarkable difference in IP evolutions of methanol or water and ammonia is presented: for methanol and water a rather localized surface or semi-internal Na 3s electron is excited to either high Rydberg or more localized states below the vertical ionization threshold. This excitation is followed by a local structural relaxation that couples to an autoionization process. For small clusters with n < 6 for methanol and n < 4 for water the addition of solvent molecules leads to larger solvent-metal-ion interaction energies, which consequently lead to lower ionization thresholds. For n = 6 (methanol) and n = 4 (water) this effect comes to a halt, which may be connected with the completion of the first cationic solvation shell limiting the release of local relaxation energy. For Na(NH(3))(n), a largely delocalized and internal electron is excited to autoionizing electronic states, a process that is no longer local and consequently may depend on cluster size up to very large n.  相似文献   

9.
The intracluster elimination reactions in solvated alkaline earth metal monocation clusters, M (+)L n , are known to be size-dependent, indicating links between chemical reactivity and the solvation environment controlled by the cluster size. For the methanol and ammonia clusters, there are a number of competing elimination channels involving the breaking of O-H, C-H, O-CH 3, or N-H bond. In this report, we focus on the four clusters with only one solvent molecule and systematically map out the reaction paths and intermediates. The interaction between the metal ion and the departing H atom or CH 3 group varies considerably, depending on the interaction between the metal ion and the remaining group. The understanding of the nature of these interactions and the evaluation of various theoretical levels in treating these reactions provide a solid base for the investigation of the solvation effects on the chemical reactivity of the larger clusters.  相似文献   

10.
The chemical reactions of water, methanol, and ammonia with Al5O4- have been studied using electronic structure calculations. The chemistry of Al5O4- with these molecules is different from that of Al3O3-. While Al3O3- dissociatively adsorbs two water molecules (and methanol), Al5O4- reacts with only one. In addition, Al5O4- does not show any reaction with ammonia while recent experimental and theoretical studies suggest that Al3O3- chemisorbs ammonia. These apparent differences in their chemical reactivity have been explained based on the thermodynamic stability of the corresponding reaction products and kinetic barriers associated with their formation.  相似文献   

11.
When irradiated with violet light, hexaazatrinaphthylene (HATN) extracts a hydrogen atom from an alcohol forming a long-living hydrogenated species. The apparent kinetic isotope effect for fluorescence decay time in deuterated methanol (1.56) indicates that the lowest singlet excited state of the molecule is a precursor for intermolecular hydrogen transfer. The photochemical hydrogenation occurs in several alcohols (methanol, ethanol, isopropanol) but not in water. Hydrogenated HATN can be detected optically by an absorption band at 1.78 eV as well as with EPR (electron paramagnetic resonance) and NMR techniques. Mass spectrometry of photoproducts reveal di-hydrogenated HATN structures along with methoxylated and methylated HATN molecules which are generated through the reaction with methoxy radicals (remnants from alcohol splitting). Experimental findings are consistent with the theoretical results which predicted that for the excited state of the HATN-solvent molecular complex, there exists a barrierless hydrogen transfer from methanol but a small barrier for the similar oxidation of water.  相似文献   

12.
First principles molecular dynamics simulations are carried out to investigate the solvation of an excess electron and a lithium atom in mixed water-ammonia cluster (H(2)O)(5)NH(3) at a finite temperature of 150 K. Both [(H(2)O)(5)NH(3)](-) and Li(H(2)O)(5)NH(3) clusters are seen to display substantial hydrogen bond dynamics due to thermal motion leading to many different isomeric structures. Also, the structures of these two clusters are found to be very different from each other and also very different from the corresponding neutral cluster without any excess electron or the metal atom. Spontaneous ionization of Li atom occurs in the case of Li(H(2)O)(5)NH(3). The spatial distribution of the singly occupied molecular orbital shows where and how the excess (or free) electron is primarily localized in these clusters. The populations of single acceptor (A), double acceptor (AA), and free (NIL) type water and ammonia molecules are found to be significantly high. The dangling hydrogens of these type of water or ammonia molecules are found to primarily capture the free electron. It is also found that the free electron binding motifs evolve with time due to thermal fluctuations and the vertical detachment energy of [(H(2)O)(5)NH(3)](-) and vertical ionization energy of Li(H(2)O)(5)NH(3) also change with time along the simulation trajectories. Assignments of the observed peaks in the vibrational power spectra are done and we found a one to one correlation between the time-averaged populations of water and ammonia molecules at different H-bonding sites with the various peaks of power spectra. The frequency-time correlation functions of OH stretch vibrational frequencies of these clusters are also calculated and their decay profiles are analyzed in terms of the dynamics of hydrogen bonded and dangling OH modes. It is found that the hydrogen bond lifetimes in these clusters are almost five to six times longer than that of pure liquid water at room temperature.  相似文献   

13.
The muon hyperfine coupling constant (hfc) of the light hydrogen isotope muonium (Mu) was measured in aqueous methanol, NaCl, and KCl solutions with varying concentrations, in deuterated water, and in deuterated methanol. The muon hfc is shown to be sensitive to the size and composition of the primary solvation shell, and the three-dimensional harmonic oscillator model of Roduner et al. (J. Chem. Phys. 1995, 102, 5989) has been modified to account for dependence of the muon hfc on the methanol or salt concentration. The muon hfc of Mu in the aqueous methanol solutions decreases with increasing methanol concentration up to a mole fraction (chiMeOH) of approximately 0.4, above which the muon hfc is approximately constant. The concentration dependence of the muon hfc is due to hydrophobic nature of Mu. It is preferentially solvated by the methyl group of methanol, and the proportion of methanol molecules in the primary solvation shell is greater than that in the bulk solution. Above chiMeOH approximately 0.4, Mu is completely surrounded by methanol. The muon hfc decreases with increasing methanol concentration because more unpaired electron spin density is transferred from Mu to methanol than to water. The unpaired electron spin density is transferred from Mu to the solvent by collisions that stretch one of the solvents bonds. The amount of spin density transferred is likely inversely related to the activation barrier for abstraction from the solvent, which accounts for the larger muon hfc in the deuterated solvents. The muon hfc of Mu in electrolyte solution decreases with increasing concentration of NaCl or KCl. We suggest that the decrease of the muon hfc is due to the amount of spin density transferred from Mu to its surroundings being dependent on the average orientation of the water molecules in the primary solvation shell, which is influenced by both Mu and the ions in solution, and spin density transfer to the ions themselves.  相似文献   

14.
The solvation of electrons in polar liquids is analyzed on the basis of an extended continuum model. In addition to the long-range electron-dipole interaction two short-range interactions are introduced. Among others one accounts for interactions with groups capable of forming hydrogen bonds and the second for quadrupolar characteristics of the liquid molecules. Both are induced by the orientation of the molecular dipole. Applying the scaling method a proper reaction coordinate is introduced and the solvation dynamics are discussed for the electron in the electronic ground state and after excitation to the p-type excited state. The observed spectral evolution of the transient absorption spectra, after two photon excitations for electrons in water and in methanol, is well described by this theory. An analytic estimate for the nonradiative deactivation from the electronically excited solvated electron is found to be consistent with an observed lifetime of 50 fs for the electron in water. The theory predicts an about three times slower internal conversion in methanol as solvent in comparison with water.  相似文献   

15.
The interaction of Na atoms with CH(3)OH films was studied with metastable impact electron spectroscopy (MIES) under UHV conditions. The films were grown at 90(+/-10) K on tungsten substrates and exposed to Na. Na-induced formation of methoxy (CH(3)O) species takes place, and Na atoms become ionized. At small Na exposures the outermost solvent layer remains largely intact as concluded from the absence of MIES signals caused by the reaction products. However, emission from CH(3)O, located at the film surface, occurs at larger exposures. In the same exposure range also Na species can be detected at the surface. The spectral feature from 3s Na ionization occurs at an energetic position different from that found for metals or semiconductors. The results are compared with density functional theory calculations [see Y. Ferro, A. Allouche, and V. Kempter, J. Chem. Phys. 120, 8683 (2004), preceding paper]. Experiment and theory agree in the energetic positions of the main spectral features from the methanol and sodium ionization. The calculations suggest that the 3s Na emission observed experimentally originates from solvated 3s electrons which are located far from the Na core and become stabilized by solvent molecules. The simultaneous emergence of emission from CH(3)O and from solvated 3s electrons suggests that the delocalization and, consequently, the solvation play an important role in the Na-induced formation of CH(3)O from CH(3)OH.  相似文献   

16.
Electron capture by both bare and microsolvated small peptide dications was investigated by colliding these ions with sodium vapor in an accelerator mass spectrometer to provide insight into processes that occur on the microsecond time frame. Survival of the intact peptide monocation after electron capture depends strongly on molecular size. For dipeptides, no intact reduced species were observed; the predominant ions correspond to loss of hydrogen and ammonia. In contrast, the intact reduced species was observed for larger peptides. Calculated structures indicate that the diprotonated dipeptide ions form largely extended structures with low probability of internal ionic hydrogen bonding (i.e., charge solvation) whereas internal ionic H-bonding occurs extensively for larger peptide dications. Solvation of the peptide ions with between one to seven methanol molecules reduces the total extent of H loss even for dipeptides where intact reduced species can survive more than a microsecond after electron capture. The yield of ions corresponding to cleavage of NCalpha bonds (c+ and z+* ions) does not depend strongly on peptide size but decreases with the extent of microsolvation for the dipeptide dications. H-bonding appears to play an important role for the survival of the intact reduced ions but less so for the formation of c+ and z+* ions. Our results indicate that electron capture predominantly occurs at the ammonium groups (at least 70 to 80%), and provides important new insights into the electron capture dissociation process.  相似文献   

17.
The enthalpies of solution and solvation of ethylene oxide oligomers CH3O(CH2CH2O)nCH3 (n = 1 to 4) in methanol and chloroform have been determined from calorimetric measurements at T = 298.15 K. The enthalpic coefficients of pairwise solute–solute interaction for methanol solutions have been calculated. The enthalpic characteristics of the oligomers in methanol, chloroform, water and tetrachloromethane have been compared. The hydrogen bonding of the oligomers with chloroform and water molecules is exhibited in the values of solvation enthalpy and coefficient of solute–solute interaction. This effect is not observed for methanol solvent. The thermochemical data evidence an existence of multi-centred hydrogen bonds in associates of polyethers with the solvent molecules. Enthalpies of hydrogen bonding of the oligomers with chloroform and water have been estimated. The additivity scheme has been developed to describe the enthalpies of solvation of ethylene oxide oligomers, unbranched monoethers and n-alkanes in chloroform, methanol, water, and tetrachloromethane. The correction parameters for contribution of repeated polar groups and correction term for methoxy-compounds have been introduced. The obtained group contributions permit to describe the enthalpies of solvation of unbranched monoethers and ethylene oxide oligomers in the solvents with standard deviation up to 0.6 kJ · mol−1. The values of group contributions and corrections are strongly influenced by solvent properties.  相似文献   

18.
We have carried out a series of molecular-dynamics simulations of water-methanol mixtures containing either an ionic or a neutral atomic solute to investigate the effects of composition of the mixture on the diffusion of these solutes. Altogether, we have considered 17 different systems of varying composition ranging from pure water to pure methanol. The diffusion coefficients of ionic solutes are found to show nonideal behavior with variation of composition of the solvent mixture. The extent of nonideality of the solute diffusion is found to be similar to the nonideality that is observed for the diffusion and orientational relaxation of water and methanol molecules in these mixtures and is attributed to the enhanced stability of the hydrogen bonds and formation of interspecies complexes in the mixtures. The neutral solute shows characteristics of hydrophobic solvation and its diffusion decreases monotonically with increase of methanol concentration. The present simulation results are compared with those of experiments wherever available.  相似文献   

19.
The point atomic charges in a number of ionic H-bonded systems are studied by ab initio calculations as functions of the proton transfer coordinate. In the proton-bound complexes of water–water, ammonia–ammonia, formamide–water, formamide–ammonia, and dimethylether–ammonia, the net atomic charges were obtained using Mulliken population analysis and from the diagonal elements of the atomic polar tensors calculated at the HF/4–31G and MP2/6–31 + G** levels. The dependence of the atomic charges upon the coordinate of the transferring proton was found to be close (within an error of 0.02 e) to a linear function for intermolecular distances in the 2.5–2.8 Å range. The obtained charge and charge flux dependencies highlight the electron redistribution during the proton transfer process and provide insights into the source of the high infrared (IR) intensities of stretching modes of N? H and O? H bonds undergoing hydrogen bonding. © 1994 by John Wiley & Sons, Inc.  相似文献   

20.
Molecular dynamics simulations are used to examine the local solvation structure of single octane and perfluorooctane molecules in liquid water, methanol, acetonitrile, and aqueous mixtures of methanol and acetonitrile. The motivation is to obtain baseline information about the solvation of perfluorooctane by liquids used as the mobile phase in liquid chromatography and how it differs from the solvation of octane. While octane is uniformly solvated by both water and the second component, perfluorooctane is solvated by methanol and acetonitrile with the exclusion of water from the first solvation layer when the solvent is a mixture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号