首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The small-angle x-ray scattering (SAXS) from glassy polyethylene terephthalate has been measured using a Bonse–Hart system. The data cover the angular range (2θ) between 20 sec and 2 deg. After correcting for absorption, background, and beam divergence, the data have been placed on an absolute basis by comparison with the scattering from a standard silica suspension. The corrected absolute intensity decreases strongly with increasing angle over the range between 20 sec and 15 min, decreases more gradually in the range between 15 min and 45 min, and reaches a nearly constant asymptotic value over the range between 45 min and 2 deg. The magnitude of the scattering in the constant range, about 0.4 (electrons)2 Å?3, is very close to the value predicted by the thermodynamic fluctuation theory for fluids applied at the glass-transition temperature [0.34 (electrons)2 Å?3]. The increase in intensity at angles smaller than about 45 min cannot be described by structures on the scale and volume fraction of the nodules reported in amorphous PET (50–100 Å), but can be well represented by small concentrations of heterogeneities, ranging in size from 100 to 2000 Angstroms, superimposed on the thermal density fluctuations frozen-in at the glass transition. The bulk structure of this material seems well described as a random amorphous solid, containing simple thermal fluctuations and a small concentration (<1 vol-%) of heterogeneities covering a range of sizes. The heterogeneities in the small end of the range may well be crystallites which formed on cooling.  相似文献   

2.
The small-angle x-ray scattering (SAXS) from glassy bisphenol-A polycarbonate has been measured using a Bonse–Hart system. The data cover the angular range (2θ) between 20 sec and 2 deg. After correcting for absorption, background, and vertical beam divergence, they have been placed on an absolute basis by comparison with the scattering from a standard silica suspension. The corrected absolute intensity decreases strongly with increasing angle over the range between 20 sec and 30 min, and is nearly constant between 30 min and 2 deg. The magnitude of the scattering in the constant range, 0.44 (electrons)2 Å?3, is well represented by the thermodynamic theory for fluids applied at the glass-transition temperature. The increase in intensity at smaller angles cannot be described by structures on the scale of the nodules reported in this material (50–200 Å), but can be well represented by a small concentration of heterogeneities (0.04% by volume or less), several thousand angstrom units in size, superimposed on the thermal density fluctuations frozen in at the glass transition. It is suggested that the nodular features reported for this material are not representative of bulk material but should be associated with surface effects. The bulk structure can—as far as the SAXS is concerned—be well described as a random amorphous solid, containing simple thermal fluctuations and a small concentration of relatively large heterogeneities.  相似文献   

3.
Small-angle x-ray scattering (SAXS) from glassy atactic polystyrene has been measured using a Bonse–Hart system. After correcting for absorption, background, and beam divergence, the scattering has been placed on an absolute basis using a standard silica suspension as a reference.The desmeared absolute intensity decreases strongly with increasing scattering angle over the range between 20 sec and 20 min. At larger angles, the intensity decreases much more slowly with increasing angle and approaches the value expected for density fluctuations frozen-in at the glass transition. The angular variation of intensity is well described by the scattering from heterogeneities of various sizes and concentrations superimposed on the scattering from thermal density fluctuations. These heterogeneities range in radius from 10 to 4000 Å. The present SAXS results on glassy polystyrene seem inconsistent with the presence of nodular features as representative of the bulk polymer.  相似文献   

4.
The small-angle x-ray scattering (SAXS) from an Epon 812 and two Epon 828 (one amine-cured and one anhydride-cured) epoxy resins has been measured using a Bonse-Hart system. The data cover the angular range (2θ) between 20 sec and 60 min. After correction for absorption, background and vertical beam divergence, they have been placed on an absolute basis by comparison with the scattering from a previously studied polycarbonate sample. The corrected absolute intensity decreases strongly with increasing angle between 20 sec and 2 min, decreases more gradually between 2 and 20–30 min, and reaches a nearly constant asymptotic value at larger angles. The magnitude of the intensity in the constant-intensity region is close to the value predicted by thermodynamic fluctuation theory for fluids applied at the glass transition temperature. The increase in intensity at angles smaller than 20–30 min is associated with heterogeneities in the cured resins. These heterogeneities cover a range of sizes in all samples, from less than 100 Å to more than 1000 Å, with the most frequently occurring size in the range 100–200 Å.  相似文献   

5.
The small-angle x-ray scattering (SAXS) from quenched and annealed rigid polyvinyl chloride (PVC) has been measured using a Bonse–Hart system. After correcting for absorption, background, and beam divergence, the scattering has been placed on an absolute basis using a standard silica suspension as a reference. The scattering from annealed (6 days at 75°C) and unannealed PVC was identical within experimental error, varying with scattering angle in a manner similar to the SAXS from other amorphous polymers. The intensity decreases rapidly with increasing scattering angle over the ranges from 20 sec to 20 min. Beyond 20 min the intensity is fairly constant, decreasing only slightly with increasing angle. At the largest angles of measurement (in the range of 120 min), the measured intensity is close to the value calculated for thermal density fluctuations frozen-in at the glass transition. The angular variation of intensity is well described by the scattering from heterogeneities of various sizes and concentrations superimposed on the scattering from thermal density fluctuations. These heterogeneities range in radius from 50 to 4500 Å and, assuming the crystalline excess density, the total concentration of heterogeneities is less than 0.5%. The mean-square fluctuation in density, determined from the measured intensity invariant, is also consistent with such a distribution of heterogeneities. The present SAXS results on rigid PVC are inconsistent with the presence of nodular features as representative of the bulk polymer. Rather, it is suggested that they are associated with surface effects. It is further suggested that previously indicated volume fractions of crystallinity in rigid PVC (generally in the range of 5–12%) are incorrect, and that the model of a three-dimensional network of crystallites used to explain the rheological behavior of this material should be re-examined.  相似文献   

6.
Photon correlation spectroscopy has proven to be a very useful technique for studying slowly relaxing density and optical anisotropy fluctuations in bulk polymers near the glass transition. When some of the fluctuations achieve relaxation times much longer than the typical averaging time for the intensity autocorrelation function (104 s), the result must be treated in the partially heterodyned limit. Also, when the sample is near the glass transition but not at equilibrium the correlation function is not stationary in time because the system is relaxing as a whole toward the equilibrium state. The above effects are discussed theoretically and demonstrated experimentally in polystyrene as a function of temperature and pressure. Light scattering with coherent excitation also fluctuates in space as well as in time (as shown in the accompanying paper). The consequences of this effect are discussed. When most of the intensity is associated with fluctuations whose relaxation times are very long in polystyrene, there is still a broad relaxation function evident. This is characteristic of a secondary relaxation process.  相似文献   

7.
Individual state-to-state rotational transitions have been resolved in small angle scattering of polarized CsF molecules on Ne, Ar, C2, H6, N2, CO, CO2, CHF3 at center of mass energies of about 0.1 eV. The absolute inelastic cross sections range from 5Å2 up to 600Å2.  相似文献   

8.
Some problems of quantitative differential thermal analysis have been studied by means of a Du Pont 900 DTA instrument. Applying the equation of heat transfer the features of a thermogram (base line and peak surface) may be interpreted in terms of heat of transition, specific heat and thermal conductivity. Satisfactory results are obtained for substances with thermal conductivities lower than 10-3 cal/sec deg.  相似文献   

9.
A series of novel polyamide-imides (PAIs) with high glass transition temperature were prepared from diimide-dicarboxylic acid, 2,2′-bis(trifluoromethyl)-4,4′-bis(trimellitimidophenyl)biphenyl (BTFTB), by direct polycondensation with various diamines in N-methyl-2-pyrrolidinone using triphenyl phosphite and pyridine as condensing agents in the presence of dehydrating agent (CaCl2). The yield of the polymers was obtained was high with moderate to high inherent viscosities (0.80-1.03 dL g−1). Gel permeation chromatography (GPC) of the polymers showed number-average and weight-average molecular weights up to 8.6 × 104 and 22 × 104, respectively. The PAIs were amorphous in nature. Most of the polymers exhibited good solubility in various solvents such as N-methyl-2-pyrrolidinone (NMP), N,N-dimethylacetamide (DMAc), N,N-dimethylformamide (DMF), pyridine, cyclohexanone and tetrahydrofuran. The polymer films had tensile strength in the range of 79-103 MPa, an elongation at break in the range of 6-16%, and a tensile modulus in the range between 2.1 and 2.8 GPa. The glass transition temperatures of the polymers were determined by DMA method and they were in the range of 264-291 °C. The coefficients of thermal expansion (CTE) of PAIs were determined by TMA instrument and they were between 29 and 67 ppm °C−1. These polymers were fairly thermally stable up to or above 438 °C, and lose 10% weight in the range of 446-505 °C and 438-496 °C, respectively, in nitrogen and air. These polymers had exhibited 80% transmission wavelengths which were in the range of 484-516 nm and their cutoff wavelengths were in between 418 and 434 nm. The PAIs with trifluoromethyl group have higher bulk density resulting in higher free volume and then lowering the dielectric constant.  相似文献   

10.
The deformation of the aromatic polyimide poly{N,N′-bis(phenoxyphenyl)-pyromellitimide} (PMDA-ODA) has been investigated by x-ray scattering. PMDA-ODA, which exhibits a smecticlike ordering in the bulk can be elongated up to 70% at room temperature without a distinct yield point. Under strain, the diffraction pattern of the intramolecular spacing occurring at a Bragg spacing of 15.4 Å is elliptical. The ellipticity shows that the molecule changes its repeat distance along the chain axis. This may result from bond angle and bond length distortions. Consistent with this is a rapid recovery well below the glass transition temperature where all but 20% strain is recovered. This localized extension, however, cannot account fully for the macroscopic deformation applied, and, as such, a global orientation of the chains occurs, as evidenced by the arcing of the diffraction profiles. The retention of the intrachain reflection indicates that bundles of chain segments ordered in a smectic fashion orient as a unit maintaining a lateral chain-segment alignment. Finally, the scattering vector at which a small-angle scattering reflection occurs was found to be correlated to the coherence length determined by a Scherrer analysis of the ca. 15.4 Å intramolecular reflection. As the strain increased, the intensity and spacing of the small-angle scattering reflection increased parallel to the stretching direction and decreased perpendicular to this. This suggests that the origin of the small-angle scattering reflection arises from electron density fluctuations along the chain axis, as is typically seen in semicrystalline polymers.  相似文献   

11.
The dielectric loss measurements of different polystyrenes (fractions and blends) with different molecular weights (M n 2000–125000 g/mol) were carried out in the frequency range 10–2–106 Hz and the temperature range of the glass process (60°–135°C, depending on the molecular weight). The measurements of the pure fractions showed that the half-width of the glass relaxation process of the different polystyrenes can be correlated by a straight line, if they are plotted versus the relaxation frequency maxima of the glass process, regardless of the difference in both their molecular weight and glass transition temperature. Moreover, the fine structure of the shape of the glass process of polystyrenes with different molecular weights was found to be the same when the glass process appears at the same relaxation frequency range. The addition of oligostyrenes or low molecular <10% wt additives to the high molecular weight polystyrene did not influence the shape of the glass process. The calorimetric glass transition temperature of polystyrene was found to be only dependent on the number average molecular weight as well as on the number of end groups, but not on the molecular weight distribution. The obtained experimental results were correlated to develop a method for the estimation of the dielectric relaxation characteristics (relaxation frequency as well as the shape parameters) of the glass process of plasticized polystyrenes based on the calorimetric glass transition temperature. A method for the analysis of the dielectric relaxation curves of mixtures of label and polymer is suggested.  相似文献   

12.
On-line two-angle (15° and 90°) light scattering measurements with a gel permeation chromatography for linear and branched polystyrene in tetrahydrofuran (a good solvent) and in trans-decalin (a theta solvent) were made and compared with data from a multi-angle light scattering detector and literature values. Theoretically, weight-average molecular weight and the radius of gyration Rg can be determined accurately in the range where Rg2k2 is less than 1.2 (rod)∼1.7 (random coil); here, k is the absolute value of the scattering vector for a right angle detector with the Berry square root method. Molecular weight dependence of the radius of gyration obtained from the two-angle light scattering detector for linear and branched polystyrenes under different thermodynamic conditions were measured and found to be almost the same as values measured with a multi-angle light scattering detector and literature values in the appropriate range of molecular weight.  相似文献   

13.
Magnesium aluminum silicate (MAS) glass samples with different concentrations of alumina (7.58 to 14.71 mol%) were prepared by melt and quench-technique. Total Mg content in the form of MgF2+MgO was kept constant at 25 mol%. MAS glass was converted into glass-ceramics by controlled heat treatment at around 950°C. Crystalline phases present in different samples were identified by powder X-ray diffraction technique. Dilatometry technique was used to measure the thermal expansion coefficient and glass transition temperature. Scanning electron microscopy (SEM) was employed to study the microstructure of the glass-ceramic sample. It is seen from X-ray diffraction studies that at low Al2O3 concentrations (up to 10.5 mol%) both MgSiO3 and fluorophlogopite phases are present and at higher Al2O3 concentrations of 12.3 and 14.7 mol%, fluorophlogopite and magnesium silicate (Mg2SiO4), respectively are found as major crystalline phases. The average thermal expansion co-efficient (avg) of the glass samples decreases systematically from 9.8 to 5.5·10–6 °C–1 and the glass transition temperature (T g) increases from 610.1 to 675°C with increase in alumina content. However, in glass-ceramic samples the avg varies in somewhat complex manner from 6.8 to 7.9·10–6 °C–1 with variation of Al2O3 content. This was thought to be due to the presence of different crystalline phases, their relative concentration and microstructure.Authors wish to thank Dr V. C. Sahni, Director Physics Group and Dr J. V. Yakhmi, Head TPPED, BARC for encouragement and support to the work. They would like to thank Dr S. K. Kulshreshtha for many useful discussions. Technical assistance from Shri B. B. Sawant, Mrs Shobha Manikandan, Mr Rakesh Kumar and Shri P. A. Wagh is gratefully acknowledged. One of authors (BIS) would like to thank BRNS-DAE for awarding him KSKRA fellowship.  相似文献   

14.
Critical fluctuations were studied in polymer mixtures of poly(dimethylsiloxane) and poly(ethylmethylsiloxane), which exhibit an upper critical temperature at Tc ⋍ 57 °C. The measurements were performed in a broad temperature range at three compositions in the miscible region close to the coexistence line. The temperature dependence of the static structure factor S(q=0) can be described by a mean field behaviour except for temperatures in the range of 6 K above Tc. There, a turnover to an Ising behaviour is observed according to a modified Landau-Ginzburg criterion. The mean field spinodal temperature Ts was determined by extrapolation of S(0)−1 to zero. From the Ornstein-Zernike representation of the angular dependence of S(q), the correlation length ζ of the concentration fluctuations can be determined and leads to a critical amplitude ζ0 = lim ζ(T→∞) = 20.5 Å. The interdiffusion dynamics described by the mutual diffusion constant D has been measured by quasielastic light scattering. It shows for the critical composition ϕc a critical slowing down as T approaches the critical temperature Tc. Furthermore, the q2 scaling of the relaxation rate of the interdiffusion dynamics changes to q3 behaviour close to Tc according to the mode coupling theory by Kawasaki.  相似文献   

15.
The kinetics of fluorescence decay of SO2 excited in the 2975–3273 Å region was studied using a powerful, frequency doubled, tunable dye laser system. The existence of two emitting species, first observed by Brus and McDonald, was confirmed. The collision-free lifetimes of the long-lived (L) species ranged from 100 to 300 μsec and the short-lived (S) species from 17 to 43 μsec over the wavelength range employed. The magnitude of the bimolecular quenching rate constant for the L state was a function of the excitation energy; the data show that about 1 kcal/mol of internal energy is lost per collision of the SO2(L) species excited in the range of 2998–3107 Å. Studies of the relative initial fluorescence intensity of the S to that of the L state (IS°/IL°) were made in experiments which extended to 0.11 mtorr. The pressure dependence of the IS°/IL° ratio for experiments at 3107, 3211, and 3225 Åproved that the S and L states do not decay independently. Either efficient bimolecular S → L conversion occurs or bimolecular S ? L interconversion of both states is important. These data coupled with spectroscopic studies of Hamada and Merer and Shaw and coworkers favor the designation of the S and L states as SO2(1A2) and SO2(1B1), respectively. However, if the assignment is correct, then the band origin of the 1B1 state must be at a somewhat longer wavelength, λ> 3273 Å than tentative spectroscopic assignments suggest. Bimolecular quenching rate constants for the L and S components with various atmospheric gases were determined in 3130- and 2662-Å studies.  相似文献   

16.
The characteristics of epoxy/(Ba0.8Sr0.2)(Ti0.9Zr0.1)O3 (BSTZ) composites are investigated for the further application in embedded capacitor device. The effects of BSTZ ceramic powder filler ratio on the chemical, physical and dielectric properties of epoxy/BSTZ composites are studied. Differential scanning calorimeter (DSC) thermal analysis is conducted to determine the optimum values of hardener agent, curing temperature, reaction heat, and glass transition temperature (Tg). The hardener reaction process starts at about 115 °C and completes at about 200 °C, for that it is appropriate to process of epoxy/BSTZ composites in the range of temperature. The highest glass transition temperature (Tg) of 155 °C is obtained at one equivalent weight ratio (hardener/epoxy). Only the BSTZ phase can be detected in the XRD patterns of epoxy/BSTZ composites. The more BSTZ ceramic powder is mixed with epoxy, the higher crystalline intensity of tetragonal BSTZ phase are revealed in the XRD patterns. The dielectric constant measured at 1 MHz increases from 5.8 to 23.6 as the content of BSTZ ceramic powder in the epoxy/BSTZ composites increases from 10 to 70 wt%. The loss tangents of the epoxy/BSTZ composites slightly increase with the increase of measurement frequency.  相似文献   

17.
New aliphatic-aromatic and fully aromatic phosphonate polyamides were prepared by polycondensation reaction of our synthesized aromatic diamine: tetraethyl[(2,5-diamino-3,6-dimethylbenzene-1,4-diyl)dimethanediyl]bis(phosphonate) with the specific di-acylchloride (adipoyl chloride, isophthaloyl chloride and terephthaloyl chloride). The chemical structure of all samples were characterized by (1H and 31P) NMR, MALDI-TOF MS, FT-IR tools, whereas their thermal properties were determined by DSC and TGA techniques. The phosponate polyadipamide (referred as PAP) is a semi-crystalline sample with a melting temperature at about 261 °C and glass transition (Tg) of 71 °C. All polymers show two thermal degradation steps in the temperature range 270-550 °C. Each polymer, independently its structure, shows the first maximum rate of thermal decomposition temperature (PDT) around 300-310 °C, which may be due to thermal degradation of phoshonate groups. MALDI-TOF spectra, beside the linear oligomers terminated with the specific groups expected in accord to the synthesis procedure, reveals the presence of cyclic oligomers in the polyadipamide and polyisophthalamide samples.  相似文献   

18.
The spectral distributions and scattering cross sections of depolarised Rayleigh scattering have been determined for liquid carbon monoxide, nitrogen and oxygen at 77 K and atmospheric pressure. It is shown that the scattering arises predominantly from molecular orientational fluctuations. The experimental scattering cross sections at 488 nm are 7 ± 1 for CO, 16 ± 1 for N2 and 46 ± 4 for O2 in units of 10?30 cm2 sr?1 molecule?1, based on a recently determined value for the absolute depolarised scattering intensity for liquid argon. The estimated proportions of induced anisotropy scattering are 10% for CO, 2.5% for N2 and 0.8% for O2. It is shown that there is appreciable free rotation of N2 and CO in the liquids at this temperature but for O2 this motion is dissipated much more efficiently by molecular interactions.  相似文献   

19.
In this paper, two silicon‐containing cycloaliphatic olefins were synthesized through the nucleophilic substitution reactions of cyclohex‐3‐enyl‐1‐methanol with di‐ or tri‐chlorosilane compounds. Then, after epoxidation, two new cycloaliphatic epoxy resins with different epoxy groups were successfully prepared. Their chemical structures were confirmed by 29Si NMR, 1H NMR, and Fourier‐transform infrared spectra (FTIR). The properties of cured products, including viscoelasticity, glass transition temperature (Tg), coefficient of thermal expansion, thermal stability and water absorption, were investigated. Compared to the difunctional epoxy resin, the trifunctional one exhibited a remarkably increased cross‐linking density from 0.82 to 4.08 × 10?3 mol/cm3 and Tg from 157 to 228°C. More importantly, prior to curing, they had viscosities of only 240–290 mPa sec at 25°C, which were much lower than that of ERL‐4221 (409 mPa sec), providing the possibility of easy processing. The high glass transition temperatures, good thermal stabilities, and mechanical properties as well as excellent flowability endow the silicon‐containing epoxy resins with promising potential in microelectronic packaging application. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
In this work, hybrid materials were synthesized as self-supported films from divinylbenzene and cyclic siloxane, in different compositions, by hydrosilylation reaction. These films showed good thermal and mechanical properties. Their glass transition temperatures were higher than those of conventional silicone networks, and dependent on divinylbenzene amounts. Films were homogeneous and no pores were observed by field emission electron scanning microscopy. Relationships between surface roughness and composition of the obtained films were discussed. The nanomorphology of the materials was studied by small angle X-ray scattering, showing polydispersed nano-sized heterogeneities. The gas permeability of the hybrid films was investigated, and the results suggested low permeable behaviour to gases, but high ideal selectivities to some pairs of gases, such as H2/O2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号