首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acoustic absorption and adiabatic compressibility measurements are reported on solutions of polystyrene (Mn = 89,000) in toluene and cyclohexane. The data in toluene cover a temperature range from 293 to 343°K and a concentration range of 10–400 Kg m?3 (1–40 wt%). The dependence of acoustic absorption on concentration was found to be linear up to 100 kg m?3, which corresponds to the concentration at which polymer–polymer interactions cause significant changes in the specific viscosity-concentration relationship. Up to 200 kg m?3 the data could be fitted to computations based on an artificial separation of the dispersion into contributions from viscoelastic and segmental processes, using parameters obtained from a study of narrow molecular weight distribution samples at 25 kg m?3. However, neither approach was capable of describing dispersions in the 300, 400 kg m?3 solutions. The modification of the relaxation spectrum observed at the highest concentrations is ascribed to volume and entropy changes associated with alterations of the local environment around a segment of the polymer chain. These changes have their origin in interchain penetration and polymer–polymer contacts, and indicate that ‘entanglement’ is primarily entropic in effect. The adiabatic compressibility exhibited similar deviations from a simple concentration dependence, and allowed estimation of an incompressible volume increment associated with polymer–polymer interactions in the high-concentration entangled matrix. However, the adiabatic compressibilities of solutions of polystyrene, 10–15 kg m?3, in cyclohexane showed no deviations from simple behavior in the region of the theta temperature. Measurements of the adiabatic compressibility of polystyrene in mixtures of cyclohexane-toluene have been used to obtain the relative magnitude of solvent and polymer contributions to the excess compressibility.  相似文献   

2.
Polystyrene was sulfonated with sulfur trioxide–triethyl phosphate complexes in dichloroethane, the object being to prepare polystyrene sulfonates substantially free of sulfone links between polymer chains. Variations in the sulfone content with reaction conditions were conveniently followed by exclusion chromatography, the sulfone peak appearing at about twice the molecular weight of the main peak. The desired products were obtained from polystyrenes with molecular weights between 1.1 × 105 and 8.7 × 105 by using (at ?20 to +25°C) a 5:1 excess of a 1.5:1 complex, the last at a concentration of 0.5M. Completely soluble polystyrene sulfonate was also obtained from polystyrene of molecular weight 2.05 × 106. Requirements for the successful use of the 1.5:1 complex include careful purification of the dichloroethane and, if 2 g or more polystyrene is to be sulfonated, formation of the complex at ?20°C. A method is given for measuring the sulfonating capability of the reagent before adding the polymer.  相似文献   

3.
The Thermal Field-Flow Fractionation (TFFF) method was used to determine the elution volumeof a series of star branched polystyrene having different number of arms but the same arm molecularweigh and polystyrene standards with narrow distribution whose molecular weight ranged from5.0×10~4 to 8.6×10~5. Results were obtained by measuring at two temperature difference (△T=30℃and △T=50℃in THF. The same star branched samples were measured by means of GPC method.Comparison of Vr-Mrelationships obtained from TFFF and GPC showed that the displacement of V_r-M curves for star and linear polystyrene is larger than that in GPC. This difference is caused by theentirely different mechanism of separation for these two methods. As the controlling factor is hy-drodynamic volume of the polymer chain in solution for GPC, it is the diffusion coefficient of polymermolecules for TFFF. The experimental results indicate that the influence of variance of chain struc-ture on diffusion coefficient is stronger than that on the hydrodynamic volume and that TFFF tech-nique may be used as a method for characterizing branching of polymer molecules. For this pur-pose a proper theoretical model and more accurate experiments are needed.  相似文献   

4.
Critical miscibility data obtained from measurements of phase-volume ratios have been used to calculate the concentration dependence of the pair interaction parameter for the system polystyrene–cyclohexane. The measured temperature and concentration ranges are 11–30°C and 4–18% polymer by weight, respectively. With the Gibbs free energy of mixing expressed in polymer segment mole fractions, x*, the pair interaction parameter is g(x*, T) = 0.4961 + 71.92/T + 0.2312x* + 0.0750x*2. In a polymer volume fraction formulation the parameter is g(φ, T) = 0.4099 + 90.65/T + 0.2064 φ + 0.0518 φ2, which approximates to χ(φ, T) = 0.2035 + 90.65/T + 0.3092 φ + 0.1554 φ2. Comparison of the temperature and concentration dependence with that obtained by other authors shows very good agreement, even when extensive extrapolations in temperature and concentration are applied. The present function is believed to be the most accurate. Solutions of mixtures of two narrow-distribution polystyrenes in cyclohexane show separation into three liquid phases under the exact conditions predicted by theoretical calculation with the present pair-interaction function.  相似文献   

5.
The ternary system nitromethane (1) +diethyl ether (2) +polystyrene (3) has been examined by determining the demixing behavior of the polymer in the temperature–solvent composition plane. Enhanced solvation of the polymer is evidenced by the ability of the mixture to dissolve very high molecular weight (107 g/mol) polystyrene at intermediate solvent compositions compared with the behavior in the two solvents separately. The cosolvent action of the mixture is analyzed in terms of modern theories of polymer solution free volume.  相似文献   

6.
We have used an optical interference technique to measure the dilation of polystyrene films in the presence of carbon dioxide or helium at pressures up to 20 atm. Dilation isotherms (plots of dilation versus gas pressure at constant temperature) were obtained for three samples of polystyrene which had widely differing molecular weights. The dilation isotherms have the same general shape as sorption isotherms, which means that all of the sorbed gas molecules contribute to volume dilation and non can be thought of as occupying molecular-sized voids in the polymer. Using sorption results from the literature we show that the partial molar volume of CO2 at 35°C is about 39 cm3 mol?1 and appears to be independent of polystyrene molecular weight. For a polystyrene sample with Mn = 3600, the partial molar volume of sorbed CO2 increases to 44 and 50 cm3 mol?1 at 45 and 55°C, respectively. The sorption of CO2 in polystyrene is shown to depress the glass transition temperature of the mixture, consistent with theoretical predictions. The shape of the dilation and sorption isotherms are consistent with the depression of the glass transition temperature.  相似文献   

7.
The interdiffusion of polymer chains across a polymer–polymer interface, and subsequent fracture to re-create the interface is reviewed. In particular, films formed via latex coalescence provide a very large surface area. Of course, latex film formation is a very important practical problem. Healing of the interface by interdiffusion is treated using the de Gennes reptation theory and the Wool minor chain reptation model. The self-diffusion coefficients of polystyrene and the polymethacrylates obtained by small-angle neutron scattering, SANS, direct non-radiative energy transfer, DET, and other techniques are compared. Reduced to 150,000 g/mol and 135°C, both polystyrene and poly(methyl methacrylate) have diffusion coefficients of the order of 10?16?10?17 cm2/sec. Variations in the diffusion coefficient values are attributed to the experimental approaches, theoretical treatments and molecular weight distribution differences. An activation energy of 55 kcal/mol was calculated from an Arrhenius plot of all polystyrene data reduced to a number-average molecular weight of 150,000 g/mol, using an inverse square molecular weight conversion method. Interestingly, this is in between the activation energies for the α and β relaxation processes in polystyrene, 84 and 35 kcal/mol, respectively. Fracture of polystyrene was considered in terms of chain scission and chain pull-out. A dental burr apparatus was used to fracture the films. For low molecular weights, chain pull-out dominates, but for high molecular weights, chain scission dominates. At 150,000 g/mol, the energy to fracture is divided approximately equally between the two mechanisms. Above a certain number average molecular weight (about 400,000 g/mol), the number of chain scissions remains constant at about 1024 scissions/m3. Energy balance calculations for film formation and film fracture processes indicate that the two processes are partly reversible, but have important components of irreversibility. From the interdiffusion SANS data, the diffusion rate is calculated to be about 1 Å/min, which is nine orders of magnitude slower than the dental burr pull-out velocity of about 0.8 cm/sec.  相似文献   

8.
The effect of long-chain branching on the size of low-density polyethylene molecules in solution is demonstrated through solution viscosity and molecular weight measurements on fractionated samples. These well-characterized fractions are analyzed by gel permeation chromatography (GPC), and it is shown that the separation of the polymer molecules by this technique is sensitive to the presence of long-chain branching. By using fractions of branched polyethylene possessing differing degrees of branching, one observes that a single curve is adequate in relating elution volume to molecular weight. This calibration curve is applied in the GPC analysis of a variety of commercial low-density polyethylene resins and it is shown, by comparison with independent osmometric and gradient elution chromatographic data, that realistic values for molecular weight and molecular weight distribution are obtained. The replacement of molecular weight M by the parameter [η]M as a function of elution volume, leads to a single relationship for both linear and branched polyethylenes. This indicates that GPC separation takes place according to the hydrodynamic volumes of the polymer molecules. The comparison of data for polyethylene and polystyrene fractions suggests that this volume dependence of the separation will be observed for other polymer–solvent systems.  相似文献   

9.
Nanosized polystyrene latexes with high polymer contents were obtained from an emulsifier-free process by the polymerization of styrene with ionic comonomer, nonionic comonomer, or both. After seeding particles were generated in an initial emulsion system consisting of styrene, water, an ionic comonomer [sodium styrenesulfonate (NaSS)] or nonionic comonomer [2-hydroxyethyl methacrylate (HEMA)], and potassium persulfate, most of the styrene monomer or a mixture of styrene and HEMA was added dropwise to the polymerizing emulsion over 6 h. Stable latexes with high polystyrene contents (≤25%) were obtained. The latex particle weight-average diameters were largely reduced (41 nm) by the continuous addition of monomer(s) compared with those (117 nm) obtained by the one-pot polymerization method. Latex particles varied from about 30 to 250 nm in diameters, whereas their molar masses were within 104 to 105 g/mol. The effect of the comonomer concentration on the number of polystyrene particles per milliliter of latex and the weight-average molar masses of the copolymers during the polymerization are discussed. The surface compositions of the latex particles were analyzed by X-ray photoelectron spectroscopy, which indicated that the surface of the latex particles was significantly enriched in NaSS, HEMA, or both. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1634–1645, 2001  相似文献   

10.
A series of macrocyclic polystyrene (PS)-polydimethylsiloxane (PDMS) block copolymers and similar block copolymers was synthesized by sequential polymerization of styrene and hexamethyl cyclotrisiloxane (D3) initiated by a difunctional anionic initiator in THF at −78° followed by coupling with Cl2SiMe2 in very dilute (10−5 – 10−6 M) solutions. Total molecular weights ranged from about 2–85 × 103. The formation of monodisperse macrocyclic block copolymers was indicated by the lower (15–30%) hydrodynamic volume of the rings compared to that of the linear block copolymers. Carbon-13 and 29Si NMR likewise supported the absence of linear polymer in the macrocyclic block copolymer. The behavior of second virial coefficient A2 of the rings and the linears versus temperature was examined by static light scattering in cyclohexane. Below 20° the A2 for the linear polymer goes negative while that for the cycle remains positive. Dynamic light scattering (DLS) as a function of temperature also reflects that the cyclic polymers remain well solvated even down to 12°C. The DLS autocorrelation functions for the linear triblock however demonstrate the onset of aggregation and phase separation as the temperature is reduced below 20°C.  相似文献   

11.
Styrene and maleic anhydride were copolymerized in benzene. The whole polymer thus obtained was fractionated with acetone and petroleum ether as the solvent and precipitant, respectively. The viscosities and osmotic pressures of the fractions were determined in tetrahydrofuran. The relation between the intrinsic viscosity and the molecular weight, [η] = 5.07 × 10?5 M?n0.81, was obtained in tetrahydrofuran. The unperturbed mean square end-to-end distance was estimated by the Stockmayer-Fixman equation. A theoretical equation for the mean square end-to-end distance for a chain of repeating units of different bond lengths a and b with a fixed valence angle θ and without restriction of internal rotation was presented and applied to this copolymer. In addition, the equation of the mean-square end-to-end distance derived by Wall for trans-polyisoprene without rotational restriction was modified for application to this copolymer. The result evaluated with our equation was about 26% smaller than that from the modified Wall equation. A steric parameter for the present copolymer is defined and discussed in comparison with those of polystyrenesulfone and polystyrene.  相似文献   

12.
Dilute dispersions of monodisperse negatively-charged polystyrene latex particles, radii 161 Å, have been examined by time-average light scattering at various latex volume fractions and electrolyte concentrations. The latter were varied from the low value produced by maintaining mixed bed ion-exchange resin beads in the systems (ca. 10–5 mol dm–3) to the value of 5×10–3 mol dm–3 obtained by the addition of sodium chloride. From angular scattering measurements determinations of the structure factors were made; these were produced as a consequence of the particle-particle interactions in the system. By extrapolation of the structure factor to zero scattering angle, values were obtained for the osmotic compressibility and hence the osmotic pressure of the systems as a function of the latex volume fraction. It was found that the experimental data obtained could be interpreted in terms of a hard-sphere model for the particle-particle interaction. Good agreement was obtained provided that the particles were assigned a hard-sphere radius which was determined by the electrostatic repulsion between the particles.  相似文献   

13.
Mixtures of two “monodisperse” samples of polystyrene (M1 = 4.53 × 104, M2 = 10.3 × 104; Mw/Mn < 1.01) in cyclohexane were allowed to separate into two phases at different polymer concentrations and temperatures. The compositions in the two phases were measured by gel permeation chromatography, and used to determine isothermal binodals. From the binodal data the critical temperature and concentration were estimated as functions of the composition of the polymer mixture, and the separation factor σ for each polymer component was calculated. In contrast with typical results in the literature, σ was almost independent of molecular weight of the polymer. It is shown by deriving a general expression for σ that theoretical prediction of σ requires accurate knowledge about the Flory–Huggins interaction parameter as a function of the concentrations of individual polymer components.  相似文献   

14.
The gas permeability and n‐butane solubility in glassy poly(1‐trimethylgermyl‐1‐propyne) (PTMGP) are reported. As synthesized, the PTMGP product contains two fractions: (1) one that is insoluble in toluene and soluble only in carbon disulfide (the toluene‐insoluble polymer) and (2) one that is soluble in both toluene and carbon disulfide (the toluene‐soluble polymer). In as‐cast films, the gas permeability and n‐butane solubility are higher in films prepared from the toluene‐soluble polymer (particularly in those films cast from toluene) than in films prepared from the toluene‐insoluble polymer and increase to a maximum in both fractions after methanol conditioning. For example, in as‐cast films prepared from carbon disulfide, the oxygen permeability at 35 °C is 330 × 10?10 cm3 (STP) cm/(cm2 s cmHg) for the toluene‐soluble polymer and 73 × 10?10 cm3 (STP) cm/(cm2 s cmHg) for the toluene‐insoluble polymer. After these films are conditioned in methanol, the oxygen permeability increases to 5200 × 10?10 cm3 (STP) cm/(cm2 s cmHg) for the toluene‐soluble polymer and 6200 × 10?10 cm3 (STP) cm/(cm2 s cmHg) for the toluene‐insoluble polymer. The rankings of the fractional free volume and nonequilibrium excess free volume in the various PTMGP films are consistent with the measured gas permeability and n‐butane solubility values. Methanol conditioning increases gas permeability and n‐butane solubility of as‐cast PTMGP films, regardless of the polymer fraction type and casting solvent used, and minimizes the permeability and solubility differences between the various films (i.e., the permeability and solubility values of all conditioned PTMGP films are similar). © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2228–2236, 2002  相似文献   

15.
A new polymeric material was prepared from polystyrene beads with N-substituted amidines and rendered hydrophilic with sulfonate and N-hydroxyethylsulfamoyl groups. It was synthesized by reacting the p-chlorosulfonyl polystyrene with ethanolamine followed by the Michael-like addition of the terminal OH of the polymer (PSEa) to N-t-butyl-N'-phenylpropenamidine 1 thus leading to the final polymer PSEaAm. Its affinity constant for human α-thrombin calculated from the Langmuir adsorption isotherms was about 106 M−1, a value comparable to the one estimated for polystyrene modified with L-arginine methyl ester. This new material was used as stationary phase in affinity chromatography of thrombin confirming a strong and specific interaction between the positively charged amidinium groups and the enzyme at pH = 7.4 and desorption at pH = 10 and high ionic strength.  相似文献   

16.
The dielectric loss measurements of different polystyrenes (fractions and blends) with different molecular weights (M n 2000–125000 g/mol) were carried out in the frequency range 10–2–106 Hz and the temperature range of the glass process (60°–135°C, depending on the molecular weight). The measurements of the pure fractions showed that the half-width of the glass relaxation process of the different polystyrenes can be correlated by a straight line, if they are plotted versus the relaxation frequency maxima of the glass process, regardless of the difference in both their molecular weight and glass transition temperature. Moreover, the fine structure of the shape of the glass process of polystyrenes with different molecular weights was found to be the same when the glass process appears at the same relaxation frequency range. The addition of oligostyrenes or low molecular <10% wt additives to the high molecular weight polystyrene did not influence the shape of the glass process. The calorimetric glass transition temperature of polystyrene was found to be only dependent on the number average molecular weight as well as on the number of end groups, but not on the molecular weight distribution. The obtained experimental results were correlated to develop a method for the estimation of the dielectric relaxation characteristics (relaxation frequency as well as the shape parameters) of the glass process of plasticized polystyrenes based on the calorimetric glass transition temperature. A method for the analysis of the dielectric relaxation curves of mixtures of label and polymer is suggested.  相似文献   

17.
The ignition of slabs of high-impact polystyrene by a lean hydrogen–oxygen flat flame was studied. The ignition delays and inital rates of flame development after ignition are reported as functions of gas temperature and the separation between flame and polymer surface. The delays follow an Arrhenius-type expression with an activation energy of 98 ± 18 kJ mol?1. The rates of flame development drop as the gas temperature increases. During long ignition delays the apparent heat transfer coefficient at the sample surface dropped from about 100 W m?2 K?1 to values close to that expected for a hot gas impinging at right angles on a cold surface. For short delays it was higher and more constant at about 100 W m?2 K?1. Although the surface temperature reached before ignition exceeded that required for nonoxidative pyrolysis, the polymer surface charred only when oxygen was present. It is concluded that both oxidative and nonoxidative pyrolysis contribute to the ignition of polystyrene.  相似文献   

18.
A high‐pressure extrusion slit die rheometer was constructed to measure the viscosity of polymer melts plasticized by liquid and supercritical CO2. A novel gas injection system was devised to accurately meter the follow of CO2 into the extruder barrel. Measurements of pressure drop, within the die, confirm the presence of a one‐phase mixture and a fully developed flow during viscosity measurements. Experimental measurements of viscosity as a function of shear rate, pressure, temperature, and CO2 concentration were conducted for three commercial polystyrene melts. The CO2 was shown to be an effective plasticizer for polystyrene, lowering the viscosity of the polymer melt by as much as 80%, depending of the process conditions and CO2 concentration. Existing theories for viscoelastic scaling of polymer melts and the prediction of Tg depression by a diluent were used to develop a free volume model for predicting the effects of CO2 concentration and pressure on polymer melt rheology. The free volume model, dependent only on material parameters of the polymer melt and pure CO2, was shown to accurately collapse the experimental data onto a single master curve independent of pressure and CO2 concentration for each of the three polystyrene samples. This model constitutes a simple predictive set of equations to quantify the effects of gas‐induced plasticization on molten polymer systems. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 3168–3180, 2000  相似文献   

19.
Anionic polymerization technique has been utilized to synthesize a bilaterally sulfur‐functionalized polystyrene, SCH3‐polystyrene‐SH. The synthesis scheme consists of (1) initiation of 4‐vinylbenzylmethyl sulfide with sec‐butyllithium to form a living sulfur‐containing initiator, (2) polymerization of styrene, and (3) termination of growing polystyrene chain with ethylene sulfide. The resulting bilaterally sulfur‐functionalized polystyrene is used to make polystyrene/gold nanoparticles (AuNPs) nanocomposite with AuNPs formed in situ in polymer solution through reduction of AuClO4. The effects of the polymer/Au molar ratio as well as the molecular weight of polymer on the size and dispersion of formed AuNPs have been studied, and the superiority of bilaterally functionalized polymer to unilaterally functionalized polymer has been demonstrated. The polystyrene/AuNPs composite has been characterized by GPC, 1H‐NMR, 13C‐NMR, EDS, TEM, UV‐Vis, and DSC. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1268–1277  相似文献   

20.
The kinetics of H abstraction by methyl and acetyl radicals from poly(vinyl acetophenone) (PVAP) films (4 × 103 mm thick) have been investigated, both radicals being derived from the polymer by photolysis (λ ≥ 300 nm) under high vacuum conditions (pressure < 10?4 Pa). Differential equations have been obtained to describe the simultaneous diffusion and reaction of each of the radicals, and the solutions (both steady and non-steady state conditions) have been used in conjunction with experimental data (including yields of methane and acetaldehyde) to obtain values of rate constants for abstraction. which it is argued is likely to occur predominantly at the α-carbon atoms in the polymer. Both steady and non-steady state calculations yield the same values of rate constants. Values of these constants have been compared with each other and that for methyl radical abstraction is compared with data obtained for abstraction from other styrene polymers. PVAP is less reactive than polystyrene towards methyl radicals. Factors accounting for these differences, including diffusant volume, polymer free volume and the energetics of formation of the transition state for abstraction in the various polymers, are considered. Theoretical rates of product formation, based on the solutions of the equations, are compared with the experimental yields of methane and acetaldehyde; a good correspondence is observed for approx. 3 hr reaction time. Subsequent discrepancies between the two sets of data are attributed to the radiation modified diffusion and optical characteristics of the polymer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号