首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fourier transform infrared spectra of freeze-dried samples of isotactic polystyrene (i-PS) from dilute solutions were analyzed. The 698, 1452, 1493 and 1601 cm−1 bands increased in sharpness and intensity as the solution concentration decreased, indicating that the freeze-dried sample is in a more dilated state. When the freeze-dried i-PS was annealed at 100°C, all aforementioned bands broadened and their heights depressed, accompanied with a significant change of the bands at 981 and 906 cm−1.  相似文献   

2.
Difficulties previously encountered in the growth of chain-folded single crystals of isotactic polystyrene suitable for study by electron microscopy and electron diffraction have been overcome using very poor solvents (including atactic polystyrene of low molecular weight). The hexagonal lamellar crystals produced are relatively stable under electron bombardment and, as a consequence, dark-field moiré patterns produced by double diffraction from overlapping layers are easy to study. These patterns show no evidence of differences in lattice spacing between fold and nonfold planes such as have been reported in single crystals of several other polymers. Such differences were attributed to congestion at fold surfaces and their absence in polystyrene, for which the surface energy of fold surfaces is small, supports this interpretation. A comparison of crystallization kinetics of polystyrene crystals grown from good and from poor solvents reveals differences in growth rates of three or more orders of magnitude at comparable supercoolings. This disparity cannot be accounted for by acceptable adjustments of thermodynamic parameters in current theories of crystallization with chain folding. The role of molecular conformation in solution appears to exert an unexpectedly large influence on crystallization rate.  相似文献   

3.
4.
In an attempt to facilitate a better understanding of the role of noncrystallizable components on the crystallization kinetics, spherulitic growth rates as well as the morphology and melting behavior of isotactic polystyrene in blends with various molecular weight atactic polystyrenes (900 to 1,800,000) over a wide range of concentrations have been studied. The growth rates are uniformly depressed with increasing amounts of atactic diluent. In addition, they are dependent on the molecular weight of the added polystyrene, generally decreasing in the molecular weight ranges between 4800 and 19,800 and between 51,000 and 1,800,000. However, between these two ranges, anomalous growth rates showing a sudden increase are observed, which may be explained by an increase in the entrapment of the noncrystallizable diluent. An explanation based on morphological observations, which showed an increase in coarseness of the spherulites with increasing molecular weight of the added atactic polystyrene, is offered.  相似文献   

5.
6.
Crystallization kinetic parameters, such as spherulitic growth rates, nucleation densities, and Avrami-exponents, have been determined by optical microscopy for isotactic polypropylene blended with atactic polystyrene. It is found that the crystallization of iPP is strongly influenced by the presence of polystyrene. With increasing PS concentration in the blend, the nucleation densities decrease, while the spherulitic growth rates as well as the positions of thermal peaks, measured by DSC, remain independent of sample composition. Due to the formation of interfaces as a consequence of increasing dispersion of polystyrene the nucleation changes from preferentially thermal to athermal.  相似文献   

7.
8.
The crystallization kinetics of a high molecular weight fraction of linear polyethylene was studied in dilute solutions of p-xylene, n-hexadecane, and decalin by dilatometric methods. For all solvents and temperatures, the experimental isotherms could be quantitatively described by the Avrami formulation for the complete transformation. This result is unique in the realm of polymer crystallization, since marked deviations from this theory are usually observed in more concentrated systems. The Avrami exponent is found to be n = 4 in all cases. The temperature coefficients of the rate constants are indicative of a nucleation controlled process. The data fit either a two-dimensional or three-dimensional nucleation mode, and a discrimination can not be made between these two cases. The interfacial free energies are found to be independent of the solvent medium. It is also shown that, irrespective of the type of nucleation control governing the kinetics, the same type governs the crystallite thickness of the lamella-like crystals that are formed.  相似文献   

9.
The viscosimetric behaviour of poly(ω-norbornenyl polystyrene) polymacromonomers is studied in dilute solutions as a function of the degree of polymerisation and the branch molar mass. We emphasise the fact that the exact molar mass characterisation using scattering techniques is illusory, owing to a strong intermolecular contribution in the scattering distribution, as evidenced by neutron scattering. Two characteristic behaviours are evidenced in the viscosimetric dependence versus molar mass of the polymacromonomer and are attributed to their global conformation when they could be considered as spherically or cylindrically symmetric. Moreover for the branch of higher molar mass used an unexplained deviation appears between the two behaviours. Received: 6 May 2000 Accepted: 6 September 2000  相似文献   

10.
Single and pauci chain aggregates of isotactic polystyrene (i-PS) were prepared by the freeze-drying process from dilute solutions with the concentration from 1×10−3 to 2×10−5 g/mL. It was found by DSC measurements that the melting point of samples gradually shifted to lower temperatures with the decrease of the solution concentration used for sample preparation. As a result, the lamella thickness of bulk samples and the samples prepared by the freeze-drying process from a solution of 2×10−5 g/mL was 19.3 and 12.6 nm, respectively. At 468.3 K the half crystallization time (t 1/2) of samples freeze-dried from a solution of 1×10−4 g/mL was about 36 s, which was merely one tenth of that of the bulk sample. In addition, the growth rate of spherulite (dr/dt) of samples prepared from a solution of 2×10−5 g/mL was faster than that of the bulk sample annealed at 478.3 K. All these results should be attributed to the fewer entanglements in samples prepared by freeze-drying process from dilute solutions, and presented clear evidence for the influence of chain entanglements on the crystallization behavior of polymers. __________ Translated from Chemical Journal of Chinese Universities, 2005, 26(10) (in Chinese)  相似文献   

11.
The spherulitic growth rate of isotactic polystyrene has been measured in a wide range of temperature by means of a polarizing microscope provided with a hot stage. It was possible to fit the experimental data to theory by choosing a value of 75 for the constant C2 of the WLF equation. The growth rate parameters were compared with those of polyethylene and polychlorotrifluoroethylene. The slowness of crystallization of isotactic polystyrene is mainly a consequence of the lower mobility of the molecules caused by the bulky phenyl groups.  相似文献   

12.
Chain scission was observed during the crystallization of p-xylene in dilute polystyrene solutions. Degradation yields were determined by gel permeation chromatography, as a function of the number of freeze-and-thaw cycles, polymer concentration, and initial polymer molecular weight (M). The rate constant for chain scission Kc increases with the polymer chain length, from 0.021%/cycle at M = 110·103 to 4.7%/cycle at M = 8.5·106. Over the two decades range of investigated molecular weights, Kc follows an empirical scaling law of the form Kc ~ (M ? Mlim)1.17578, where Mlim is a limiting molecular weight ? 29,000 g. mol?1 below which no degradation could be induced. Some propensity for midchain scission was detected, although this tendency was much weaker in comparison to flow-induced degradation. A chain scission model based on crack propagation failed to reproduce the experimental results. To explain the observed dependence of Kc with the square of the radius of gyration, an interfacial stress transmission mechanism between the crystallization fronts and the polymer coil has been proposed. © 1994 John Wiley & Sons, Inc.  相似文献   

13.
We report viscometric data collected in a Couette rheometry on dilute, single‐solvent polystyrene (PS)/dioctyl phthalate (DOP) solutions over a variety of polymer molecular weights (5.5 × 105Mw ≤ 3.0 × 106 Da) and system temperatures (288 K ≤ T ≤ 318 K). In view of the essential viscometric features, the current data may be classified into three categories: The first concerns all the investigated solutions at low shear rates, where the solution properties are found to agree excellently with the Zimm model predictions. The second includes all sample solutions, except for high‐molecular‐weight PS samples (Mw ≥ 2.0 × 106 Da), where excellent time–temperature superposition is observed for the steady‐state polymer viscosity at constant polymer molecular weights. No similar superposition applies at a constant temperature but varied polymer molecular weights, however. The third appears to be characteristic of dilute high‐molecular‐weight polymer solutions, for which the effects of temperature on the viscosity curve are further complicated at high shear rates. The implications concerning the relative importance of hydrodynamic interactions, segmental interactions, and chain extensibility with increasing polymer molecular weight, system temperature, and shear rate are discussed. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 787–794, 2006  相似文献   

14.
15.
The pressure derivatives of the second virial coefficients [dA2/dP; 0.1 ≤ P (MPa) ≤ 35.0] for dilute polystyrene (PS) solutions in good, θ, and poor solvents were measured with static light scattering. The solvent quality improved (dA2/dP > 0) in the good and poor solvents that we investigated (toluene, chloroform; and methylcyclohexane) but deteriorated (dA2/dP < 0) in θ solvents (cyclohexane and 50‐50 cis,trans‐decalin). The effects of temperature [22 < T (°C) < 45] and molecular weight [25 × 103 < weight‐average molecular weight (amu mol?1) < 900 × 103] on dA2/dP for PS/cyclohexane solutions were examined. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 3070–3076, 2003  相似文献   

16.
The effect of pressure on the viscosity of dilute solutions of anionically polymerized polystyrene (M?w = 209,000; Mw/Mn = 1.12) in toluene has been studied at different temperatures and concentrations using a falling-body viscometer. Measurements were performed in the concentration range from 0.0025 to 0.02 g/mL and at temperatures from 25 to 45°C under pressure up to 1057 bars. The viscosity coefficient η increases exponentially with pressure at a given temperature and concentration, while the apparent volume of activation V? decreases with increasing temperature. The hypothesis that the pressure dependence of η is given by the pressure dependence of the activation energy holds true under the prevailing thermodynamic conditions. Log η increases linearly with increasing concentration at a given pressure. Intrinsic viscosity increases with increasing pressure, whereas the Huggins constant decreases.  相似文献   

17.
When isotactic polystyrene (i-PS) is crystallized from the melt or from the glassy state at rather large supercooling an additional melting peak appears on the curve during scanning in a differential calorimeter. The overall rate of crystallization deduced from the total peak areas as a function of crystallization time did not fit the Avrami equation well. When we omit the area of the additional melting peak in the kinetic analysis a much better fit is obtained. We also observed that no lamellar thickening occurs during isothermal crystallization. In view of the low degree of crystallinity of i-PS these results lead to the idea that a secondary crystallization process takes place within the amorphous parts of the spherulites resulting in this additional melting peak on the DSC curve. The large supercooling needed and the increase in peak area with increasing molecular weight make us suppose that intercrystalline links are probably responsible for the additional melting peak of bulk-crystallized i-PS. Electron microscopic studies of surface replicas of i-PS support this view.  相似文献   

18.
The isothermal crystallization processes of isotactic polystyrene at 160 degrees C from different initial states (quenched glassy state and melt state), i.e., cold- and melt-crystallization processes, have been investigated by infrared (IR) and generalized two-dimensional (2D) IR correlation spectroscopy. It has been found that not only the crystallization kinetics and crystallinity but also the sequential changes of the amorphous and crystalline sensitive bands are quite different for the cold- and melt-crystallization processes. This leads to the conclusion that the physical origins for spinodal decomposition prior to polymer crystallization may be different for different crystallization processes.  相似文献   

19.
The melting behavior of isotactic polystyrene, crystallized from the melt and from dilute solutions in trans-decalin, has been studied by differential scanning calorimetry and solubility measurements. The melting curves show 1, 2, or 3 melting endotherms. At large supercooling, crystallization from the melt produces a small melting endotherm just above the crystallization temperature Tc. This peak originates from secondary crystallization of melt trapped within the spherulites. The next melting endotherm is related to the normal primary crystallization process. Its peak temperature increases linearly with Tc, yielding an extrapolated value for the equilibrium melting temperature Tc° of 242 ± 1°C as found before. By self-seeding, crystallization from the melt could be performed at much higher temperature to obtain melting temperatures as high as 243°C, giving rise to doubt about the value of Tc° found by extrapolation. For normal values of Tc and heating rate, an extra endotherm appears on the melting curve. Its peak temperature is the same for both melt-crystallized and solution-crystallized samples, and independent of Tc, but rises with decreasing heating rate. From the effects of heating rate and partial scanning on the ratio of peak areas and of previous heat treatment on dissolution temperature, it is concluded that this peak arises from the second one by continuous melting and recrystallization during the scan.  相似文献   

20.
The influence of various thermal pretreatments on the nucleation of isotactic polystyrene has been studied quantitatively by dilatometry. A distinction can be made between nuclei still present above the melting point (“resistant” nuclei) and nuclei created by severe supercooling (“induced” nuclei). The number of spherulites formed has been determined for different combinations of supercooling and crystallization temperatures. The results are interpreted in a satisfactory manner by assuming that in severe supercooling induced nuclei are created, which may grow into effective nuclei at higher temperatures. The crystallization of a severely supercooled polymer is completely governed by these induced nuclei, because they outnumber the resistant nuclei by some orders of magnitude. The number of induced nuclei can be decreased by purifying the polymer (removing catalyst residues). When cooled polymer is heated to temperatures just above the melting point, the induced nuclei are destroyed (“reversible melting”), so that only the resistant nuclei, which are few in number, remain. These resistant nuclei govern the crystallization behavior of a polymer which has not previously been cooled. Their number decreases on heating to temperatures far above the melting point.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号