共查询到2条相似文献,搜索用时 0 毫秒
1.
The direct observation of temperature-dependent lipid phase equilibria, using two-photon excitation fluorescence microscopy on giant unilamellar vesicles (GUVs) composed of different lipid mixtures, provides novel information about the physical characteristics of lipid domain coexistence. Physical characteristics such as the shape, size, and time evolution of different lipid domains are not directly accessible from the traditional experimental approaches that employ either small and large unilamellar vesicles or multilamellar vesicles. In this review article, we address the most relevant findings reported from our laboratory regarding the direct observation of lipid domain coexistence at the level of single vesicles in artificial and natural lipid mixtures. In addition, key points concerning our experimental approach will be discussed. The unique advantages of the fluorescent probe 6-dodecanoyl-2-dimethylaminonaphthalene (LAURDAN) under two-photon excitation fluorescence microscopy is particularly addressed, especially, the possibility of obtaining information on the phase state of different lipid domains directly from the fluorescent images. 相似文献
2.
In living cells the transport and diffusion of molecules is constrained by compartments of various sizes. This paper is an attempt to show that the size of these compartments can in principle be estimated experimentally from Fluorescence Correlation Spectroscopy (FCS) combined with the measurement of the photobleaching rate. In this work, confocal fluorescence microscopy experiments have been carried out on giant unilamellar vesicles, a system that mimics cellular compartmentalisation. We have developed numerical and analytical models to describe the fluorescence decay due to photobleaching in this geometry, which has enabled us to point out two regimes depending on the value of the parameter P(B) = sigma(B)P/D (where sigma(B) is the photobleaching cross section of the dye, D its diffusion constant, and P the laser power (in photon/s)). In particular, when P(B) < 1 (i.e. in the fast diffusion regime), the photobleaching rate is independent of the diffusion constant and scales like sigma(B)P/R2, in agreement with the experimental results. On the other hand, the standard diffusion models used to analyse the FCS data do not take into account the effects of the fluorescence decay on the autocorrelation curve. We show here how to correct the raw data for these drawbacks. 相似文献