首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
报道了天然气吸附剂的基本制备技术,并采用体积法评定了吸附剂的储气性能。结果表明,采用作者开发的吸附剂制备工艺可获得性能优良的天然气吸附剂。以木质素为原料制备的粉状吸附剂,其比表面积可达2912m2/g,微孔体积可达1-48cm3/g,平均孔径为1-48nm ,堆密度为0-30g/cm3 。在6-0MPa、25 ℃下,天然气的吸附储存量可达到140V/V。天然气吸附剂的储气性能与其比表面、微孔数量、填充密度等参数有重要关系  相似文献   

2.
低活化比制备天然气吸附剂: 活化助剂提高吸附剂性能   总被引:1,自引:0,他引:1  
以石油焦为原料、KOH为主活化剂,在低活化比mKOH∶mC=2∶1下制备吸附剂,考察了活化助剂KNO3、NaNO3、Mg(NO3)2、Ni(NO3)2和HJ对吸附剂储气性能的影响,对活化助剂提高吸附剂性能的机理进行了分析。结果表明,活化物料中加入适量助剂KNO3、Mg(NO3)2、Ni(NO3)2或HJ能显著提高吸附剂性能,HJ与Mg(NO3)2、Ni(NO3)2协同活化的效果最好。其中,Mg(NO3)2、HJ加入量均为10 %(助剂与石油焦质量分数)下制备的吸附剂样品在25℃、3.5MPa下对甲烷质量吸附量达0.143,有效体积释放量达117.1,性能超过活化比mKOH∶mC=3∶1、无助剂下制备的吸附剂。  相似文献   

3.
报道了天然气吸附剂的基本制备技术,并采用体积法评定了吸附剂的储气性能。结果表明,采用作者开发的吸附剂制备工艺可获得性能优良的天然气吸附剂。以木质素为原料制备的粉状吸附剂,其比表面积可达2912m^2/g,微孔体积可达1.48cm^3/g,平均孔径为1.48nm,堆密度为0.30g/cm^3。在6.0MPa、25℃下,天然气的吸附储存量可达到140V/V。天然气吸附剂的储气性能与其比表面,微孔数量,  相似文献   

4.
为深入了解高硫石油焦在工业应用高温工况下的热解过程以及硫的析出特性,本研究采用高温固定床对青岛高硫石油焦进行了高温(900-1500℃)热解实验,考察了高温热解下热解气体释放规律,热解过程中焦的物理孔隙结构以及化学特性的演变,并对热解过程中硫的析出与演变特性进行了研究。结果表明,随着热解温度的升高,石油焦热解气中的H2含量逐渐增加,CO含量变化不大,CH4与CO2含量则逐渐下降;热解焦的比表面积与平均孔隙均随热解温度的升高有所增加,颗粒的表面形态则受温度影响较小;热解温度的升高会降低石油焦中含有的非定型碳比例,提高其微晶结构的有序性以及石墨化程度;热解焦的气化活性随热解温度的升高先降低后升高,在1100℃附近有最小值; 1500℃高硫石油焦硫元素析出率达81.34%,仅少量硫醇类有机硫和噻吩环内的硫元素得以残存。  相似文献   

5.
关于焦碳中碳的测定方法主要有燃烧 -非水滴定法或容量法[1~ 4] 、重量法[5] 、γ射线法[6] 和中子活化法[7] 。硫的测定方法主要有燃烧 -库仑法[8] 、燃烧 -红外吸收法[9] 或气相色谱法[1 0 ] 、X射线法[1 1 ] 。用CS- 34 4碳硫测定仪同时测定石油焦中碳硫含量 ,具有快速准确、人为误差小、测定范围宽的特点 ,为石油焦中碳硫的测定提供了一种简便、快速的方法。1 试验部分1 .1 主要仪器CS- 34 4碳硫测定仪 (美国 LECO公司 )坩埚 2 5mm× 2 5mm,在马弗炉中 1 30 0°C下灼烧 1 h以上。1 .2 试验方法1 .2 .1 碳标准校正 ( w C90 % )…  相似文献   

6.
石油焦活化机理的研究   总被引:11,自引:4,他引:11  
研究了石油焦在高温、碱性条件下的活化机理。扫描电镜和低温N2吸附法测定孔结构结果表明,石油焦在750 ℃~800 ℃下活化得到的产品,比表面达2 900 m2/g,微孔率到90%,吸附甲烷的体积比为115∶1,是较理想的活化反应温度范围。气相色谱分析结果证明,在活化过程中产生的气体为H2,CO2,CO,CH4。X射线衍射结果表明,吸附剂产物属于部分石墨化的无定形体。  相似文献   

7.
《广州化学》2017,(6):26-31
以纤维素为原料,1-乙烯基咪唑为最佳功能单体,2,4-二氯苯酚(2,4-DCP)作为模板分子,采用分子印迹技术结合原子转移自由基聚合方法,制备纤维素基印迹吸附材料。利用红外光谱(FT-IR)及扫描电镜(SEM)对材料的结构及性能进行了表征,并对纤维素印迹吸附剂的选择性吸附性能进行研究。  相似文献   

8.
天然气作为绿色替代能源,其吸附储存在移动应用方面至关重要,目前广泛关注的3种吸附储存技术存在着各自的优势和劣势。本文综述了多孔碳质吸附剂、金属有机框架吸附剂和吸附天然气水合物的研究进展,总结了天然气吸附性能的主要影响因素和改进途径,介绍了超临界吸附理论和分子模拟预测的相关工作,比较了3种技术的优劣及相关发展趋势。  相似文献   

9.
稻壳吸附剂提高啤酒稳定性的研究   总被引:8,自引:0,他引:8  
利用稻壳良好的吸附特性,制备成吸附剂用于提高啤酒的稳定性。稻壳粉碎与稀硫酸混合,240℃密封干馏,再以高温灼烧活化,得到对单宁有较强吸附能力的稻壳吸附剂。以此吸附剂去除啤酒中的部分单宁,以提高酒体的胶体稳定性,试验表明,每100ml啤酒以0.4g吸附剂在15℃下搅拌吸30min,可使酒中单宁量下降16.7%,从而减缓了引起啤酒混浊的缔合反应,使酒体稳定性明显提高。与聚乙烯聚吡咯烷酮比较,具有吸附速度快、吸附单宁更强及成本低廉的优点。  相似文献   

10.
石油焦制备炭分子筛的原位合成TG-DTA研究与机理考察   总被引:1,自引:2,他引:1  
邢伟  阎子峰 《燃料化学学报》2001,29(Z1):198-201
以石油焦合成新型微孔炭分子筛是石油焦升值利用的有效途径.实验采用TG-DTA原位技术,研究了石油焦合成炭分子筛反应过程的全貌.还采用反应快速终止技术研究不同活化阶段反应产物的结构特点.并结合实验现象,推测活化过程分两步进行,活化反应在低温段和高温段存在两种不同的活化机理即低温强碱活化机理和高温金属离子活化机理.利用TG-DTA原位技术考察金属离子对石油焦的活化过程.  相似文献   

11.
石油焦高温气化反应性   总被引:5,自引:4,他引:5  
常压,1 200 ℃~1 500 ℃,在自制管式反应器中,以二氧化碳为气化介质,研究了石油焦以及石油焦与后布连煤焦掺混后形成的混合焦的气化反应性,借助于XRD分析了高温处理后石油焦与煤焦在碳结构有序化方面的区别。研究结果表明,当碳转化率高于0.7,气化超过1 300 ℃,石油焦的反应速率出现急骤下降,气化温度越高,相应石油焦速率下降越快。混合焦气化反应性既不同于纯石油焦也不同于纯煤焦。随石油焦掺入比变化而改变的拐点主要源于石油焦与煤焦的反应性之间差异。较高转化率下出现的拐点,主要源于石油焦本身随气化温度提高导致气化速率下降。XRD测定显示,高温处理后石油焦中碳有序化程度要明显高于煤焦。高气化温度下石油焦碳结构发生明显有序化是导致其反应活性急剧下降的重要原因。  相似文献   

12.
在热天平中采用等温热重法对石油焦、稻草焦、石油焦/稻草混合物以及石油焦/稻草焦混合物进行了CO2共气化研究,实验温度900~1 050 ℃,添加稻草焦的质量比为0~0.5,考察稻草焦对石油焦的催化气化作用。结果表明,在一定气化温度下,石油焦和稻草焦混合物的共气化碳转化率高于各自气化碳转化率的简单加和,具有一定的协同效应,混合物的气化反应速率随着稻草焦添加比例的增加而升高。石油焦、稻草、稻草焦及其各个混合物的反应活性由大到小的顺序为:稻草半焦>脱灰稻草半焦>石油焦/稻草混合物>石油焦/稻草焦混合物>石油焦/脱灰稻草混合物>石油焦/脱灰稻草半焦混合物>石油焦。  相似文献   

13.
以氮气为吸附质,测定了部分气化石油焦的比表面积、孔容及其随孔径的分布,研究了石油焦的孔隙结构在气化过程中的变化及其对气化反应的影响。结果表明,石油焦的孔主要由微孔组成;水蒸气条件下气化时石油焦的比表面积、孔容随碳转化率增加而不断增大;不同孔隙率和比表面积的石油焦,其气化反应速率曲线变化趋势不同;石油焦的比气化反应速率与孔隙结构有着紧密的关系,比气化反应速率和有效比表面积之间有着较好的线性关系。  相似文献   

14.
生物质与石油焦共气化特性的研究   总被引:1,自引:0,他引:1  
在内径为50mm,高约950mm的固定床反应器上对生物质与石油焦共气化特性进行了研究。研究了气化模式、石油焦添加比例、添加方式、粒径大小及气化温度对气化效果及焦油量的影响。结果表明,石油焦可以起到催化裂解生物质焦油的作用。随着氧气的体积分数从2%增加到15%时,气体的热值从5.35MJ/m3降低到2.98MJ/m3。在气化温度为700℃时,四种氧气含量下生物质单独气化时焦油产率平均值为6.4%,气体热值为4.31MJ/m3;生物质和石油焦混合气化时焦油产率平均值为2.9%,气体热值为5.19MJ/m3。石油焦的最佳添加比例为1∶1。生物质和石油焦不混掺焦油的产率最大,混掺其次,石油焦提前加入效果最好。随着添加石油焦粒径的增大,石油焦对生物质气化焦油的裂解率逐渐降低。在两种气化模式下,随着气化温度的升高,焦油的产率均逐渐降低。  相似文献   

15.
采用热天平考察了1 000~1 150 ℃、30%~100%水蒸气分压下微波处理后石油焦气化动力学特性,并采用四种动力学模型对气化反应速率曲线进行了拟合。结果表明,微波处理后石油焦水蒸气气化反应速率随着微波照射时间、功率、温度的减小而增加,随着水蒸气分压的增加而增加;微波处理后石油焦在1 100 ℃时水蒸气气化反应速率随着转化率的增加先增加后减小,在转化率为20%左右出现最大值,且不随微波处理条件和水蒸气分压的变化而改变,但随着气化温度的升高气化反应速率最大值提前出现。正态分布函数模型能够准确的拟合不同温度下微波处理后石油焦水蒸气气化反应速率随转化率的变化,相关系数均在0.97以上。  相似文献   

16.
黑液与石油焦共热解及其产物特性研究   总被引:1,自引:0,他引:1  
运用热重-红外联用(TGA-FTIR)和扫描电镜(SEM)对黑液与石油焦的共热解过程进行了实验研究,考察了两者在共热解过程中的热失重、挥发性组分释放及固体产物表面形貌特性;同时运用热重(TGA)探究了热解固体产物黑液半焦和石油焦的CO2共气化反应特性。结果表明,在黑液与石油焦共热解过程中,温度低于600℃时,两者的热解相互独立;温度达到600℃之后,相对于黑液和石油焦单独热解的加权平均值,挥发性气体产物CO2和CO的释放峰值温度向低温区移动,失重特性也随之发生变化;800℃下的共热解固体产物表面产生新的形态特征,黑液的烧结得到抑制;850℃下的黑液半焦与石油焦CO2共气化实验表明,两者在共气化过程中存在协同效应,各自的碳转化率和气化速率明显提高,整体碳转化率提高了51.27%,气化反应速率最大值增大了两倍。  相似文献   

17.
采用逐级化学提取结合ICP-OES方法,研究了高硫石油焦燃烧过程中重金属元素钒的赋存形态和迁移转化行为,并结合热力学分析方法,探讨了其化学反应机理。石油焦中钒的赋存形态主要为有机质结合态和稳定态。随着燃烧温度的升高,有机质结合态的钒发生快速分解直至消失,且与Ca、Na、Fe和K等矿物质反应,转化为水溶态和部分离子可交换态、碳酸盐结合态、氧化物结合态钒。稳定态钒主要是与其他矿物质形成非晶态结构物质存在于石油焦中,在高温燃烧过程中,会部分熔融转化并释放出少量的钒。石油焦中钒的挥发性随着燃烧温度和燃尽率的升高逐渐增大,且呈现阶段性挥发的特点。温度高于1100℃,有机质结合态的钒快速分解,且部分转化为具有挥发性的VO2等化合物,致使钒的挥发率急剧增大。  相似文献   

18.
石油焦与煤混合燃料热重分析研究   总被引:6,自引:0,他引:6  
石油焦与煤混合燃烧是高效处理石油焦的有效方法,作者对选用的石油焦和煤不同配比的混合燃料进行了热重分析研究。使用常压高温热天平研究、分析了各配比混合燃料的热解特性和燃烧特性。并根据化学动力学方法计算了各过程的化学动力学参数,即活化能E和频率因子A0。结果表明,各混合燃料热解起始温度大致相同,随煤焦比减小,挥发分析出速率变缓,最大释放速度所对应的温度升高,最终失重率减小,挥发分释放特性指数减小;随煤焦比增大,混合燃料着火温度和燃尽温度逐渐降低,最大燃烧速率所对应的温度降低,燃烧特性指数增大;随煤焦比减小,活化能和频率因子增大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号