首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
2.
On the basis of the Wilsonian renormalization group (WRG) analysis of nuclear effective field theory (NEFT) including pions, we propose a practical calculational scheme in which the short-distance part of one-pion exchange (S-OPE) is removed and represented as contact terms. The long-distance part of one-pion exchange (L-OPE) is treated as perturbation. The use of dimensional regularization (DR) for diagrams consisting only of contact interactions considerably simplifies the calculation of scattering amplitude and the renormalization group equations. NLO results for nucleon-nucleon elastic scattering in the S-waves are obtained and compared with experiments. A brief comment on NNLO calculations is given.  相似文献   

3.
4.
5.
We consider the NN interaction in pionless effective field theory (EFT) up to next-to-next-to-leading order (NNLO) and use a recursive subtractive renormalization scheme to describe NN scattering in the 1 S 0 channel. We fix the strengths of the contact interactions at a reference scale, chosen to be the one that provides the best fit for the phase-shifts, and then slide the renormalization scale by evolving the driving terms of the subtracted Lippmann?CSchwinger equation through a non-relativistic Callan?CSymanzik equation. The results show that such a systematic renormalization scheme with multiple subtractions is fully renormalization group invariant.  相似文献   

6.
We perform a Wilsonian renormalization group analysis for the nucleon–nucleon scattering in the P waves in the nuclear effective field theory including pions, in a similar way to the one done for the S-waves in our previous paper. We emphasize that the one-pion exchange interaction with large momentum transfer is of the same order as the leading contact interaction, so that there is no mismatch of the power counting. It is explicitly shown by obtaining consistent sets of renormalization group equations, that the cutoff dependence generated by the loop diagrams containing pion exchanges can be compensated by the cutoff dependence of the coupling constants of the contact interactions.  相似文献   

7.
We analyze the charge transport between a one-dimensional weakly interacting electron gas and a superconductor within the scaling approach in the basis of scattering states. We derive the renormalization group equations, which fully account for the intrinsic energy dependence due to Andreev reflection. A strong renormalization of the corresponding reflection phase is predicted even for a perfectly transparent metal-superconductor interface. The interaction-induced suppression of the Andreev conductance is shown to be highly sensitive to the normal-state resistance, providing a possible explanation of experiments with carbon-nanotube/superconductor junctions by Morpurgo et al. [Science 286, 263 (1999)].  相似文献   

8.
A two-dimensional disordered system of interacting electrons when the principal source of spin relaxation is the spin-orbit scattering by impurities, is studied. It is shown that in this system conductivity has a very complicated behaviour since there is a focus on the phase plane of the renormalization group equations.  相似文献   

9.
The renormalization of the attractive 1/r2 potential has recently been studied using a variety of regulators. In particular, it was shown that renormalization with a square well in position space allows multiple solutions for the depth of the square well, including, but not requiring a renormalization group limit cycle. Here, we consider the renormalization of the 1/r2 potential in momentum space. We regulate the problem with a momentum cutoff and absorb the cutoff dependence using a momentum-independent counterterm potential. The strength of this counterterm is uniquely determined and runs on a limit cycle. We also calculate the bound state spectrum and scattering observables, emphasizing the manifestation of the limit cycle in these observables.  相似文献   

10.
Methods based on Wilson’s renormalization group have been successfully applied in the context of nuclear physics to analyze the scale dependence of effective nucleon–nucleon (NN) potentials, as well as to consistently integrate out the high-momentum components of phenomenological high-precision NN potentials in order to derive phase-shift equivalent softer forms, the so called Vlow-k potentials. An alternative renormalization group approach that has been applied in this context is the similarity renormalization group (SRG), which is based on a series of continuous unitary transformations that evolve hamiltonians with a cutoff on energy differences. In this work we study the SRG evolution of a leading order (LO) chiral effective NN potential in the 1S0 channel derived within the framework of the subtracted kernel method (SKM), a renormalization scheme based on a subtracted scattering equation.  相似文献   

11.
We study the three-body system with short-range interactions characterized by an unnaturally large two-body scattering length. We show that the off-shell scattering amplitude is cutoff independent up to power corrections. This allows us to derive an exact renormalization group equation for the three-body force. We also obtain a renormalized equation for the off-shell scattering amplitude. This equation is invariant under discrete scale transformations. The periodicity of the spectrum of bound states originally observed by Efimov is a consequence of this symmetry. The functional dependence of the three-body scattering length on the two-body scattering length can be obtained analytically using the asymptotic solution to the integral equation. An analogous formula for the three-body recombination coefficient is also obtained.  相似文献   

12.
We describe an extension to the density matrix renormalization group method incorporating real-time evolution. Its application to transport problems in systems out of equilibrium and frequency dependent correlation functions is discussed and illustrated in several examples. We simulate a scattering process in a spin chain which generates a spatially nonlocal entangled wave function.  相似文献   

13.
The structure of a field theoretical many-body problem is studied within the (non-static) Lee model. The explicit solvability of the renormalization problem allows the investigation of renormalization corrections in many-particle systems. Herefore, the renormalized equations are worked out for the N-V scattering and for the binding-energy problem of “N-V matter” — these cases taken in analogy to nucleon-nucleon scattering and nuclear matter. The N-V matter equations are obtained from a cluster expansion suitably defined for the field theoretical case. The ansatz for the correlated wave functions is chosen in such a way as to generate a two-hole-line expansion of the binding energy. The renormalized form of this field theoretical extension of Brueckner theory is discussed in detail revealing the medium effects on renormalization.  相似文献   

14.
We present a systematic stability analysis for the two-dimensional Hubbard model, which is based on a new renormalization group method for interacting Fermi systems. The flow of effective interactions and susceptibilities confirms the expected existence of a d-wave pairing instability driven by antiferromagnetic spin fluctuations. More unexpectedly, we find that strong forward scattering interactions develop which may lead to a Pomeranchuk instability breaking the tetragonal symmetry of the Fermi surface.  相似文献   

15.
The density matrix renormalization group (DMRG) approach is extended to complex-symmetric density matrices characteristic of many-body open quantum systems. Within the continuum shell model, we investigate the interplay between many-body configuration interaction and coupling to open channels in case of the unbound nucleus (7)He. It is shown that the extended DMRG procedure provides a highly accurate treatment of the coupling to the nonresonant scattering continuum.  相似文献   

16.
The results of perturbative QCD calculations are reformulated as renormalization-scheme independent predictions; in so doing, we obtain a renormalization group improvement of perturbation theory. As an application, we show that asymptotic freedom alone does not give the correct quantitative relation between pseudoscalar charmonium decay and the scaling violations in deep inelastic scattering.  相似文献   

17.
《Nuclear Physics B》2003,663(3):591-604
We study a non-local version of the sine-Gordon model connected to a many-body system with backward and umklapp scattering processes. Using renormalization group methods we derive the flow equations for the couplings and show how non-locality affects the gap in the spectrum of charge-density excitations. We compare our results with previous predictions obtained through the self-consistent harmonic approximation.  相似文献   

18.
胡宁 《物理学报》1966,22(3):325-333
本文讨论了经过減除的π-核子散射色散关系和通常拉格朗日描述及其重整化处理间的关系。指出一次減除可以解释为作用常数的重整化。我们用经过減除的色散关系处理了π-核子S波散射。计算结果指出,π介子和核子间的相互作用应该是赝矢型而不是赝标型的。  相似文献   

19.
We consider quasielastic large-angle electron-muon scattering at high energies with radiative corrections up to the two-loop level. The lowest order radiative corrections arising from the one-loop virtual photon emission and a real soft emission are presented within a power accuracy. Two-loop corrections are supposed to be of three gauge-invariant classes. One of them, the so-called vertex contribution, is given in the logarithmic approximation. The relation to the renormalization group approach is discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号