首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Boranes are widely used Lewis acids and N-heterocyclic carbenes (NHCs) are popular Lewis bases, so it is remarkable how little was known about their derived complexes until recently. NHC-boranes are typically readily accessible and many are so stable that they can be treated like organic compounds rather than complexes. They do not exhibit "borane chemistry", but instead are proving to have a rich chemistry of their own as reactants, as reagents, as initiators, and as catalysts. They have significant potential for use in organic synthesis and in polymer chemistry. They can be used to easily make unusual complexes with a broad spectrum of functional groups not usually seen in organoboron chemistry. Many of their reactions occur through new classes of reactive intermediates including borenium cations, boryl radicals, and even boryl anions. This Review provides comprehensive coverage of the synthesis, characterization, and reactions of NHC-boranes.  相似文献   

2.
Molecular compounds featuring nitrogen atoms are typically regarded as Lewis bases and are extensively employed as donor ligands in coordination chemistry or as nucleophiles in organic chemistry. By contrast, electrophilic nitrogen‐containing compounds are much rarer. Nitrenium cations are a new family of nitrogen‐based Lewis acids, the reactivity of which remains largely unexplored. In this work, nitrenium ions are explored as catalysts in five organic transformations. These reactions are the first examples of Lewis acid catalysis employing nitrogen as the site of substrate activation. Moreover, these compounds are readily accessed from commercially available reagents and exhibit remarkable stability toward moisture, allowing for benchtop transformations without the need to pretreat solvents.  相似文献   

3.
Latent nucleophiles are compounds that are themselves not nucleophilic but can produce a strong nucleophile when activated. Such nucleophiles can expand the scope of Lewis base catalyzed reactions. As a proof of concept, we report that N‐silyl pyrroles, indoles, and carbazoles serve as latent N‐centered nucleophiles in substitution reactions of allylic fluorides catalyzed by Lewis bases. The reactions feature broad scopes for both reaction partners, excellent regioselectivities, and produce enantioenriched N‐allyl pyrroles, indoles, and carbazoles when chiral cinchona alkaloid catalysts are used.  相似文献   

4.
Dirhodium compounds are emerging as highly efficient catalysts for diverse reactions, and those with carboxamidate ligands have the broadest applications. The unique features of these compounds are their structural rigidity, ease of ligand exchange, open diaxial sites for coordination with Lewis bases, and their low oxidation potential. As consequences of this, dirhodium carboxamidates are efficient and effective catalysts for metal carbene reactions, Lewis acid-catalyzed processes, and chemical oxidations. With chiral carboxamidate ligands these dirhodium compounds show exceptional enantiocontrol for intramolecular cyclopropanation and carbon-hydrogen insertion reactions of diazoacetates, and they are also highly efficient and selective for hetero-Diels-Alder reactions. Their limitations lie in their moderate reactivities for metal carbene generation and Lewis acid catalysis and in the cost of the precious metal rhodium.  相似文献   

5.
《Tetrahedron letters》2014,55(51):6959-6964
The activation of H2 for the catalytic hydrogenation of unsaturated compounds is one of the most useful reactions in both academia and chemical industry, which has long been predominated by the transition-metal catalysis. However, metal-free hydrogen activation represents a formidable challenge, and has been less developed. The recent emerging chemistry of frustrated Lewis pairs (FLPs) with a combination of sterically encumbered Lewis acids and Lewis bases provides a promising approach for metal-free hydrogenation due to their amazing abilities for the challenging H2 activation. In the past several years, the hydrogenation of a wide range of unsaturated compounds using FLP catalysts has been successfully developed. Despite these advances, the corresponding asymmetric hydrogenation is just in its start-up step. Similar to the mode of HH bond activation, SiH bond can also be activated by FLPs for the hydrosilylation of ketones and imines. But its asymmetric version is also not well-solved. This Letter will outline the recent important progress of metal-free catalytic asymmetric hydrogenation and hydrosilylation using FLP catalysts.  相似文献   

6.
The synthesis and isolation of atrane-type molecules 1 E+ (E=Si, Ge, or Sn) having a cationic group 14 elemental center are reported. The cations 1 E+ act as hard and soft Lewis superacids, which readily interact with various hard and soft Lewis basic substrates. The rigid atrane framework stabilizes the localized positive charge on the elemental center and assists the formation of the well-defined highly coordinated states of 1 E+. The cations were applied to the hydrodefluorination, Friedel-Crafts reaction, alkyne cyclization, and carbonyl reduction as Lewis acid catalysts. Most notably, [ 1 Si][ClO4] exhibits unique chemoselectivity that depends on a solvent in the competitive reaction of silyl enol ether with a mixture of benzaldehyde dimethyl acetal and benzaldehyde. Our findings indicate the potential of hard and soft Lewis superacids in organic synthesis.  相似文献   

7.
阐述了SHAB规则,分类,酸碱软硬度的定量标度和理论解释。根据SHAB规则把体内微量元素分为Lewis硬酸,软酸与交界酸和硬碱,软碱与交界碱,体内不同体液和器官含有丰富的软硬配体,与各类软硬酸(金属离子)结合成不同稳定性的配合物,发挥其生物活性作用。  相似文献   

8.
The development of new methods for enantioselective reactions that generate stereogenic centres within molecules are a cornerstone of organic synthesis. Typically, metal catalysts bearing chiral ligands as well as chiral organocatalysts have been employed for the enantioselective synthesis of organic compounds. In this review, we highlight the recent advances in main group catalysis for enantioselective reactions using the p-block elements (boron, aluminium, phosphorus, bismuth) as a complementary and sustainable approach to generate chiral molecules. Several of these catalysts benefit in terms of high abundance, low toxicity, high selectivity, and excellent reactivity. This minireview summarises the utilisation of chiral p-block element catalysts for asymmetric reactions to generate value-added compounds.  相似文献   

9.
Stereoselective hybrid systems based on metal‐assisted catalysis with a chiral biomacromolecule form an attractive research area for the synthesis of enantiomerically pure compounds. Although various methods are available for this purpose, most rely on the use of enzymes, proteins, or RNA. The application of DNA‐based hybrid catalysts for enantioselective synthesis emerged only a few years ago. DNA‐based hybrid catalysts have been self‐assembled from DNA and a metal complex with a specific ligand through supramolecular or covalent anchoring strategies and have demonstrated high stereoselectivity and rate enhancement in Lewis acid catalyzed reactions, such as Diels–Alder, Michael addition, and Friedel–Crafts reactions. For these reactions, cheap and commercially available salmon testes DNA has generally been used. In this Minireview, we summarize recent developments in the area of asymmetric catalysis with DNA‐based hybrid catalysts.  相似文献   

10.

Ligand properties of coordination and organometallic compounds are examined on the basis of acid-base interactions of metal-containing bases and Lewis acids. Such interactions lead to homo- or heteronuclear di- and polynuclear complexes. Special attention is given to coordinatively-unsaturated molecules of classic Werner complexes, o -hydroxyazomethine chelates, metal carbonyls and their derivatives, ferrocenes with donor fragments, and coordinated heteroaromatic compounds.  相似文献   

11.
Oxygen‐ and nitrogen‐containing heterocyclic compounds are widely recognized as key components in many natural products and biologically relevant molecules, but often the problem comes down to methodologies in synthesizing them. Halocyclization of olefinic substrates is a promising strategy in the construction of O‐ and N‐heterocyclic compounds, which further signifies the development of their asymmetric variants. Over the past years, our group has been devoted to this particular area of asymmetric electrophilic halocyclization with chalcogen‐containing molecules as catalysts. In this account, the main focus is on the development of our novel chiral catalysts and applications derived from the reaction products.  相似文献   

12.
In this paper, new possibilities for metal amides are described. Although typical metal amides are recognized as strong stoichiometric bases for deprotonation of inert or less acidic hydrogen atoms, transition‐metal amides, namely silver and copper amides, show interesting abilities as one of the simplest acid/base catalysts in stereoselective carbon–carbon bond‐forming reactions.  相似文献   

13.
The design and development of new high-performance catalysts for applications in asymmetric catalytic reactions is of ongoing interest in organic chemistry. The combination of a Lewis acid and a Lewis base working in concert is now considered state of the art in stereoselective syntheses. The synergistic activation by two or more reactive centers allows high reaction rates and excellent transfer of stereochemical information. Despite the self-quenching reaction between Lewis acids and Lewis bases that might lead to an inactive catalyst, considerable effort has been directed towards the development of the dual-activation concept. The ultimate goal is to mimic nature by the discovery of catalytic systems analogous to enzymatic processes that involve metal-ion cocatalysts. With this aim, the dual activation concept greatly broadens the range of artificial catalysts. The most efficient catalytic systems are reviewed, and the mechanisms of action are discussed.  相似文献   

14.
Alkylation of aromatic compounds with various alkylating agents such as benzyl chloride, benzyl alcohol and isopropyl chloride were investigated using ZnCl2 based ionic liquid (ILs) Lewis acid catalysts. Multi-component Lewis acid catalysts of ZnCl2 and ionic liquids such as 1-butyl-3-methylimidazolium bromide, 1-butylpyridinium bromide, cholin chloride and tetrabutylammonium bromide were prepared, supported on silica gel, and compared for alkylation reactions with various alkylating agents. Among the IL-based catalysts, 1-butyl-3-methyl imidazolium-bromide-ZnCl2 and 1-butylpyridinium bromide-ZnCl2 are highly active.  相似文献   

15.
给电子体在丙烯聚合MgCl2载体催化剂体系中的作用   总被引:5,自引:0,他引:5  
制备了3种含有不同内给电子体(邻苯二甲酸二异丁酯,9,9-二甲氧基甲基-芴和1,1-双甲氧基甲基-环丁烷)的MgCl2负载型丙烯聚合齐格勒-纳塔(Z-N)催化剂,研究了给电子体结构与聚合性能之间的关系,用红外光谱剖析了催化剂及其相关化合物的结构,结果发现催化剂中的内给电子体直接与MgCl2配位,而没有与TiCl4结合.内给电子体的加入,降低了Z-N催化剂中钛的含量,提高催化丙烯聚合的活性,使聚合物的分子量分布变窄.聚合物立构规整度的变化强烈依赖于内给电子体的结构.  相似文献   

16.
Electron-precise B−B bonded compounds are valuable reagents in organic syntheses, which can be used as key starting material for the synthesis of functionalized organoboranes. Bis(pinacolato)diborane(4) B2pin2 and its derivatives are among the most studied diboron species. However, their B−B bonds usually need to be activated by transition metal catalysts or bases for further transformations. Recently, many well-designed/reactive electron-precise B−B bonded compounds have been developed, which could facilitate direct reactions with small molecules, unsaturated substrates, and electrophiles. This review highlights the synthesis, structure, and reactivity of neutral and anionic B−B bonded compounds.  相似文献   

17.
Schiff bases and their complexes are good candidates as versatile compounds which are synthesized by the condensation of a primary amino compound with either aldehydes or ketones for a variety of industrial applications. They can act as catalysts in the catalytic oxidation of organic compounds. Recent researches in oxidation catalysis have focused on how to employ the metal‐catalyzed oxidation of organic substrates. This review summarizes the current developments of the last few decades for the oxidations of organic compounds that proceed through Schiff base complexes. The chemical syntheses of Schiff bases and their complexes are outlined.  相似文献   

18.
Systematic screening of accelerated chemical reactions at solid/solution interfaces has been carried out in high-throughput fashion using desorption electrospray ionization mass spectrometry and it provides evidence that glass surfaces accelerate various base-catalyzed chemical reactions. The reaction types include elimination, solvolysis, condensation and oxidation, whether or not the substrates are pre-charged. In a detailed mechanistic study, we provide evidence using nanoESI showing that glass surfaces can act as strong bases and convert protic solvents into their conjugate bases which then act as bases/nucleophiles when participating in chemical reactions. In aprotic solvents such as acetonitrile, glass surfaces act as ‘green’ heterogeneous catalysts that can be recovered and reused after simple rinsing. Besides their use in organic reaction catalysis, glass surfaces are also found to act as degradation reagents for phospholipids with increasing extents of degradation occurring at low concentrations. This finding suggests that the storage of base/nucleophile-labile compounds or lipids in glass containers should be avoided.

Glass surfaces are found to be strong bases, ‘green’ heterogeneous catalysts and degradation reagents: glass microspheres act as strong bases to accelerate multiple base-catalyzed reaction types by a factor of 26–2021.  相似文献   

19.
The asymmetric addition of trimethylsilyl cyanide to aldehydes can be catalysed by Lewis acids and/or Lewis bases, which activate the aldehyde and trimethylsilyl cyanide, respectively. It is not always apparent from the structure of the catalyst whether Lewis acid or Lewis base catalysis predominates. To investigate this in the context of using salen complexes of titanium, vanadium and aluminium as catalysts, a Hammett analysis of asymmetric cyanohydrin synthesis was undertaken. When Lewis acid catalysis is dominant, a significantly positive reaction constant is observed, whereas reactions dominated by Lewis base catalysis give much smaller reaction constants. [{Ti(salen)O}2] was found to show the highest degree of Lewis acid catalysis, whereas two [VO(salen)X] (X=EtOSO3 or NCS) complexes both displayed lower degrees of Lewis acid catalysis. In the case of reactions catalysed by [{Al(salen)}2O] and triphenylphosphine oxide, a non‐linear Hammett plot was observed, which is indicative of a change in mechanism with increasing Lewis base catalysis as the carbonyl compound becomes more electron‐deficient. These results suggested that the aluminium complex/triphenylphosphine oxide catalyst system should also catalyse the asymmetric addition of trimethylsilyl cyanide to ketones and this was found to be the case.  相似文献   

20.
Reactions of some typical acid halides of carbonic and trithiocarbonic acids and of orthophosphoric and sulfuric acids with Lewis acids and Lewis bases are compared. Acylium, perfluoroacylium, thioacylium, and even sulfonylium ions are obtainable with Lewis acids. It is possible by conductivity measurements and by electronic and above all IR spectroscopic investigations to determine whether the 1:1 adducts of acid halides and Lewis compounds are acylium or sulfonylium salts or donor-acceptor complexes. In the reaction with Lewis bases, the halogen atom in the acid halide is replaced by the electron donor, generally with formation of nonpolar molecular compounds or complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号