首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper is concerned with the passivity problem for a class of Markovian switching complex dynamic networks with multiple time-varying delays and stochastic perturbations. Some sufficient conditions are obtained to guarantee that the complex dynamic networks with multiple time-varying delays and stochastic perturbations under Markovian switching are passive in the sense of expectation. The appropriate stochastic Lyapunov–Krasovskii functional was constructed, and stochastic theory, linear matrix inequality technique and properties of Weiner process were employed to achieve the results. Finally, some simulation examples are presented to illustrate the effectiveness of the obtained results.  相似文献   

2.
In this paper, global robust stability of uncertain stochastic recurrent neural networks with Markovian jumping parameters is considered. A novel Linear matrix inequality(LMI) based stability criterion is obtained to guarantee the asymptotic stability of uncertain stochastic recurrent neural networks with Markovian jumping parameters.The results are derived by using the Lyapunov functional technique, Lipchitz condition and S-procuture. Finally, numerical examples are given to demonstrate the correctness of the theoretical results. Our results are also compared with results discussed in [31] and [34]to show the effectiveness and conservativeness.  相似文献   

3.
This paper proposes an approach of finite-time synchronization to identify the topological structure and unknown parameters simultaneously for under general complex dynamical networks. Based on the finite-time stability theory, an effective control input and a feedback control with an updated law are designed to realize finite-time synchronization between two complex networks. The unknown network topological structure and system parameters of uncertain general complex dynamical networks are identified simultaneously. Since finite-time topology identification means the suboptimum in identified time, the results of this paper are important. Several useful criteria for finite-time synchronization are given. Finally, two examples simulations for supporting the theoretical results are also provided.  相似文献   

4.
The stochastic finite-time boundedness problem is considered for a class of uncertain Markovian jumping neural networks (MJNNs) that possess partially known transition jumping parameters. The transition of the jumping parameters is governed by a finite-state Markov process. By selecting the appropriate stochastic Lyapunov–Krasovskii functional, sufficient conditions of stochastic finite time boundedness of MJNNs are presented and proved. The boundedness criteria are formulated in the form of linear matrix inequalities and the designed algorithms are described as optimization ones. Simulation results illustrate the effectiveness of the developed approaches.  相似文献   

5.
This paper investigates the global robust stability problem of Markovian switching uncertain stochastic genetic regulatory networks with unbounded time-varying delays and norm bounded parameter uncertainties. The structure variations at discrete time instances during the process of gene regulations known as hybrid genetic regulatory networks based on Markov process is proposed. The jumping parameters considered here are generated from a continuous-time discrete-state homogeneous Markov process, which are governed by a Markov process with discrete and finite state space. The concept of global robust μ-stability in the mean square for genetic regulatory networks is given. Based on Lyapunov function, stochastic theory and Itô’s differential formula, the stability criteria are presented in the form of linear matrix inequalities (LMIs). Numerical examples are presented to demonstrate the effectiveness of the main result.  相似文献   

6.
In this paper, the problem of stochastic stability for a class of delayed neural networks of neutral type with Markovian jump parameters is investigated. The jumping parameters are modelled as a continuous-time, discrete-state Markov process. A sufficient condition guaranteeing the stochastic stability of the equilibrium point is derived for the Markovian jumping delayed neural networks (MJDNNs) with neutral type. The stability criterion not only eliminates the differences between excitatory and inhibitory effects on the neural networks, but also can be conveniently checked. The sufficient condition obtained can be essentially solved in terms of linear matrix inequality. A numerical example is given to show the effectiveness of the obtained results.  相似文献   

7.
This paper proposes a framework for finite-time synchronization of coupled systems with time delay and stochastic disturbance under feedback control. Combining Kirchhoff"s Matrix Tree Theorem with Lyapunov method as well as stochastic analysis techniques, several sufficient conditions are derived. Differing from previous references, the finite time provided by us is related to topological structure of networks. In addition, two concrete applications about stochastic coupled oscillators with time delay and stochastic Lorenz chaotic coupled systems with time delay are presented, respectively. Besides, two synchronization criteria are provided. Ultimately, two numerical examples are given to illustrate the effectiveness and feasibility of the obtained results.  相似文献   

8.
In this paper, the robust synchronization problem for a class of stochastic delayed complex networks with switching topology and unmodeled dynamics is investigated by using the adaptive control scheme. Different from some existing uncertain complex network models, the uncertain terms in the complex networks are only needed to be bounded. Based on the stability theory of stochastic delayed differential equation, a novel adaptive controller which ensures that all the nodes in the complex networks robustly synchronize with the target node is derived. Finally, a numerical example is provided to show the effectiveness of the proposed method.  相似文献   

9.
In this paper, a general model of an array of N linearly coupled delayed neural networks with Markovian jumping hybrid coupling is introduced. The hybrid coupling consists of constant coupling, discrete and distributed time-varying delay coupling. The complex dynamical network jumps from one mode to another according to a Markovian chain, where all the coupling configurations are also dependent on mode switching. Meanwhile, all the coupling terms are subjected to stochastic disturbances which are described in terms of a Brownian motion. By adaptive approach, some sufficient criteria have been derived to ensure the synchronization in an array of jump neural networks with mixed delays and hybrid coupling in mean square. Surprisingly, it is found that complex networks with two different structure can also be synchronized according to known probability matrix. Finally, an example illustrated by switching between small-world networks and nearest-neighbor networks is given to show the effectiveness of the proposed criteria.  相似文献   

10.
This paper deals with the problem of global exponential stability for a general class of stochastic high-order neural networks with mixed time delays and Markovian jumping parameters. The mixed time delays under consideration comprise both discrete time-varying delays and distributed time-delays. The main purpose of this paper is to establish easily verifiable conditions under which the delayed high-order stochastic jumping neural network is exponentially stable in the mean square in the presence of both mixed time delays and Markovian switching. By employing a new Lyapunov–Krasovskii functional and conducting stochastic analysis, a linear matrix inequality (LMI) approach is developed to derive the criteria ensuring exponential stability. Furthermore, the criteria are dependent on both the discrete time-delay and distributed time-delay, and hence less conservative. The proposed criteria can be readily checked by using some standard numerical packages such as the Matlab LMI Toolbox. A simple example is provided to demonstrate the effectiveness and applicability of the proposed testing criteria.  相似文献   

11.
This study deals with the pinning synchronization problem for complex dynamical networks (CDNs) with Markovian jumping parameters and mixed delays under sampled‐data control technique. The mixed delays cover both discrete and distributed delays. The Markovian jumping parameters are modeled as a continuous‐time, finite‐state Markov chain. The sufficient conditions for asymptotic synchronization of considered networks are obtained by utilizing novel Lyapunov‐Krasovskii functional and multiple integral approach. The obtained criteria is formulated in terms of LMIs, which can be checked for feasibility by making use of available softwares. Lastly, numerical simulation results are presented to validate the advantage of the propound theoretical results. © 2016 Wiley Periodicals, Inc. Complexity 21: 622–632, 2016  相似文献   

12.
将一类具有混合时滞随机神经网络均方渐近稳定的判据推广到不确定神经网络的鲁棒稳定性,所导出的判据都表示为线性矩阵不等式(LMI)的形式,可通过使用一些标准的数值方法求解.最后给出了一个简单的例子说明所提出的判定条件的有效性和可应用性.  相似文献   

13.
In this paper, the stability analysis problem is investigated for a class of Markovian jumping genetic regulatory networks (GRNs) with mixed time delays (discrete time delays and distributed time delays) and stochastic perturbations. The main purpose of the addressed stability analysis problem is to establish some easy-to-verify conditions under which the dynamics of the true concentrations of the messenger ribonucleic acid and protein is asymptotically stable. By utilizing a more general Lyapunov-Krasovskii functional based on the idea of “delay decomposing” and the LMI (linear matrix inequality) technique, we derive sufficient delay-dependent conditions ensuring the asymptotically stability of the GRNs with mixed time delays and noise perturbations in terms of LMI. Finally, simulation examples are exploited to illustrate the effectiveness of the developed theoretical results.  相似文献   

14.
In this paper, we study the finite-time stochastic synchronization problem for complex networks with stochastic noise perturbations. By using finite-time stability theorem, inequality techniques, the properties of Weiner process and adding suitable controllers, sufficient conditions are obtained to ensure finite-time stochastic synchronization for the complex networks. The effects of control parameters on synchronization speed and time are also analyzed. The results of this paper are applicable to both directed and undirected weighted networks while do not need to know any information about eigenvalues of coupling matrix. Since finite-time synchronization means the optimality in convergence time and has better robustness and disturbance rejection properties, the results of this paper are important. A numerical example shows the effectiveness of our new results.  相似文献   

15.
In this paper, stochastic global exponential stability criteria for delayed impulsive Markovian jumping reaction-diffusion Cohen-Grossberg neural networks (CGNNs for short) are obtained by using a novel Lyapunov-Krasovskii functional approach, linear matrix inequalities (LMIs for short) technique, It? formula, Poincare inequality and Hardy-Poincare inequality, where the CGNNs involve uncertain parameters, partially unknown Markovian transition rates, and even nonlinear p-Laplace diffusion (p > 1). It is worth mentioning that ellipsoid domains in $R^m$ (m ≥ 3) can be considered in numerical simulations for the first time owing to the synthetic applications of Poincar′e inequality and Hardy-Poincar′e inequality. Moreover, the simulation numerical results show that even the corollaries of the obtained results are more feasible and effective than the main results of some recent related literatures in view of significant improvement in the allowable upper bounds of delays.  相似文献   

16.
Recent developments in the field of stochastic mechanics and particularly regarding the stochastic finite element method allow to model uncertain behaviours for more complex engineering structures. In reliability analysis, polynomial chaos expansion is a useful tool because it helps to avoid thousands of time-consuming finite element model simulations for structures with uncertain parameters. The aim of this paper is to review and compare available techniques for both the construction of polynomial chaos and its use in computing failure probability. In particular, we compare results for the stochastic Galerkin method, stochastic collocation, and the regression method based on Latin hypercube sampling with predictions obtained by crude Monte Carlo sampling. As an illustrative engineering example, we consider a simple frame structure with uncertain parameters in loading and geometry with prescribed distributions defined by realistic histograms.  相似文献   

17.
This paper is concerned about exponential stability in mean square of Markovian switching delayed reaction-diffusion neutral-type stochastic neural networks (RNSNNs). By Lyapunov function method, several novel stability criteria on exponential mean square stability of Markovian switching RNSNNs with time-varying delays are obtained. In the end, two examples are given to verify the feasibility of our findings.  相似文献   

18.
This paper is concerned with the robust stabilization problem for a class of linear uncertain stochastic systems with Markovian switching. The uncertain stochastic system with Markovian switching under consideration involves parameter uncertainties both in the system matrices and in the mode transition rates matrix. New criteria for testing the robust stability of such systems are established in terms of bi-linear matrix inequalities (BLMIs), and sufficient conditions are proposed for the design of robust state-feedback controllers. A numerical example is given to illustrate the effectiveness of our results.  相似文献   

19.
In this paper, the problem of stochastic stability for a class of time-delay Hopfield neural networks with Markovian jump parameters is investigated. The jumping parameters are modeled as a continuous-time, discrete-state Markov process. Without assuming the boundedness, monotonicity and differentiability of the activation functions, some results for delay-dependent stochastic stability criteria for the Markovian jumping Hopfield neural networks (MJDHNNs) with time-delay are developed. We establish that the sufficient conditions can be essentially solved in terms of linear matrix inequalities.  相似文献   

20.
This paper investigates delay-dependent robust exponential state estimation of Markovian jumping fuzzy neural networks with mixed random time-varying delay. In this paper, the Takagi–Sugeno (T–S) fuzzy model representation is extended to the robust exponential state estimation of Markovian jumping Hopfield neural networks with mixed random time-varying delays. Moreover probabilistic delay satisfies a certain probability-distribution. By introducing a stochastic variable with a Bernoulli distribution, the neural networks with random time delays is transformed into one with deterministic delays and stochastic parameters. The main purpose is to estimate the neuron states, through available output measurements such that for all admissible time delays, the dynamics of the estimation error is globally exponentially stable in the mean square. Based on the Lyapunov–Krasovskii functional and stochastic analysis approach, several delay-dependent robust state estimators for such T–S fuzzy Markovian jumping Hopfield neural networks can be achieved by solving a linear matrix inequality (LMI), which can be easily facilitated by using some standard numerical packages. The unknown gain matrix is determined by solving a delay-dependent LMI. Finally some numerical examples are provided to demonstrate the effectiveness of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号