首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The development of new RNA-binding ligands is attracting increasing interest in fundamental science and the pharmaceutical industry. The goal of this study was to improve the RNA binding properties of triplex-forming peptide nucleic acids (PNAs) by further increasing the pKa of 2-aminopyridine ( M ). Protonation of M was the key for enabling triplex formation at physiological pH in earlier studies. Substitution on M by an electron-donating 4-methoxy substituent resulted in slight destabilization of the PNA–dsRNA triplex, contrary to the expected stabilization due to more favorable protonation. To explain this unexpected result, the first NMR structural studies were performed on an M -modified PNA–dsRNA triplex which, combined with computational modeling identified unfavorable steric and electrostatic repulsion between the 4-methoxy group of M and the oxygen of the carbonyl group connecting the adjacent nucleobase to PNA backbone. The structural studies also provided insights into hydrogen-bonding interactions that might be responsible for the high affinity and unusual RNA-binding preference of PNAs.  相似文献   

2.
Coupling of nonnatural nucleobases to the orthogonally protected backbone 1 on the solid phase provided access to novel peptide nucleic acid (PNA) conjugates 2 , which are difficult to synthesize by standard routes. Hybridization probes containing the thiazolorange dye might allow DNA sequence analysis in real time. B−CH2CO=modified nucleobase, fluorescent dye, etc; Boc, Fmoc=protecting groups.  相似文献   

3.
4.
5.
6.
7.
8.
Simultaneous targeted cancer imaging, therapy and real‐time therapeutic monitoring can prevent over‐ or undertreatment. This work describes the design of a multifunctional nanomicelle for recognition and precise near‐infrared (NIR) cancer therapy. The nanomicelle encapsulates a new pH‐activatable fluorescent probe and a robust NIR photosensitizer, R16FP, and is functionalized with a newly screened cancer‐specific aptamer for targeting viable cancer cells. The fluorescent probe can light up the lysosomes for real‐time imaging. Upon NIR irradiation, R16FP‐mediated generation of reactive oxygen species causes lysosomal destruction and subsequently trigger lysosomal cell death. Meanwhile the fluorescent probe can reflect the cellular status and in situ visualize the treatment process. This protocol can provide molecular information for precise therapy and therapeutic monitoring.  相似文献   

9.
One of the most promising strategies to treat cancer is the use of therapeutic antibodies that disrupt cell–cell adhesion mediated by dysregulated cadherins. The principal site where cell–cell adhesion occurs encompasses Trp2 found at the N‐terminal region of the protein. Herein, we employed the naturally exposed highly conserved peptide Asp1‐Trp2‐Val3‐Ile4‐Pro5‐Pro6‐Ile7, as epitope to prepare molecularly imprinted polymer nanoparticles (MIP‐NPs) to recognize cadherins. Since MIP‐NPs target the site responsible for adhesion, they were more potent than commercially available therapeutic antibodies for inhibiting cell–cell adhesion in cell aggregation assays, and for completely disrupting three‐dimensional tumor spheroids as well as inhibiting invasion of HeLa cells. These biocompatible supramolecular anti‐adhesives may potentially be used as immunotherapeutic or sensitizing agents to enhance antitumor effects of chemotherapy.  相似文献   

10.
Bimetallic nanomaterials (BMNs) composed of two different metal elements have certain mixing patterns and geometric structures, and they often have superior properties than monometallic nanomaterials. Bimetallic-based nanomaterials have been widely investigated and extensively used in many biomedical fields especially cancer therapy because of their unique morphology and structure, special physicochemical properties, excellent biocompatibility, and synergistic effect. However, most reviews focused on the application of BMNs in cancer diagnoses (sensing, and imaging) and rarely mentioned the application of the treatment of cancer. The purpose of this review is to provide a comprehensive perspective on the recent progress of BNMs as therapeutic agents. We first introduce and discuss the synthesis methods, intrinsic properties (size, morphology, and structure), and optical and catalytic properties relevant to cancer therapy. Then, we highlight the application of BMNs in cancer therapy (e.g., drug/gene delivery, radiotherapy, photothermal therapy, photodynamic therapy, enzyme-mediated tumor therapy, and multifunctional synergistic therapy). Finally, we put forward insights for the forthcoming in order to make more comprehensive use of BMNs and improve the medical system of cancer treatment.  相似文献   

11.
In this study, a sandwich‐type electrochemical enzyme‐based LNA‐modified DNA biosensor was developed to detect relative gene in chronic Myelogenous Leukemia first. This biosensor is based on a ‘sandwich’ detection strategy, which involves a pair of probes (a capture probe immobilized at the electrode surface and a reporter probe labeled biotin as an affinity tag for avidin‐HRP) modified LNA. Since biotin can be connected with avidin‐HRP, this biosensor offers an enzymatically amplified electrochemical current signal for the detection of target DNA. This new pattern exhibits high sensitivity and selectivity, and this biosensor has been used for an assay of PCR real sample with satisfactory result.  相似文献   

12.
Breast cancer (BC) is the most common malignant tumor in women worldwide, which seriously threatens women’s physical and mental health. In recent years, photodynamic therapy (PDT) has shown significant advantages in cancer treatment. PDT involves activating photosensitizers with appropriate wavelengths of light, producing transient levels of reactive oxygen species (ROS). Compared with free photosensitizers, the use of nanoparticles in PDT shows great advantages in terms of solubility, early degradation, and biodistribution, as well as more effective intercellular penetration and targeted cancer cell uptake. Under the current circumstances, researchers have made promising efforts to develop nanocarrier photosensitizers. Reasonably designed photosensitizer (PS) nanoparticles can be achieved through non-covalent (self-aggregation, interfacial deposition, interfacial polymerization or core-shell embedding and physical adsorption) or covalent (chemical immobilization or coupling) processes and accumulate in certain tumors through passive and/or active targeting. These PS loading methods provide chemical and physical stability to the PS payload. Among nanoparticles, metal nanoparticles have the advantages of high stability, adjustable size, optical properties, and easy surface functionalization, making them more biocompatible in biological applications. In this review, we summarize the current development and application status of photodynamic therapy for breast cancer, especially the latest developments in the application of metal nanocarriers in breast cancer PDT, and highlight some of the recent synergistic therapies, hopefully providing an accessible overview of the current knowledge that may act as a basis for new ideas or systematic evaluations of already promising results.  相似文献   

13.
Under potentially prebiotic scenarios, ribose (pentose), the component of RNA is formed in meager amounts, as opposed to ribulose and xylulose (pentuloses). Consequently, replacement of ribose in RNA, with pentulose sugars, gives rise to prospective oligonucleotide candidates that are potentially prebiotic structural variants of RNA that could be formed by the same type of chemical pathways that gave rise to RNA from ribose. The potentially natural alternative (1′→3′)‐ribulo oligonucleotides and (4′→3′)‐ and (1′→3′)‐xylulo oligonucleotides consisting of adenine and thymine were synthesized and found to exhibit no self‐pairing or cross‐pairing with RNA. This signifies that even though pentulose sugars may have been abundant in a prebiotic scenario, the pentulose nucleic acids (NAs), if and when formed, would not have been competitors of RNA, or interfered with the emergence of RNA as a functional informational system. The reason for the lack of base pairing in pentulose NA highlights the contrasting and central role played by the furanosyl ring in RNA and pentulose NA, enabling and optimizing the base pairing in RNA, while impeding it in pentulose NA.  相似文献   

14.
用实时荧光定量PCR方法检测56对人卵巢癌组织及对应的癌旁组织中iASPP(Inhibitor of ASPP fami-ly)mRNA表达水平,应用受试者工作特征曲线(Receiver operating characteristic curve,ROC曲线)分析癌组织与癌旁组织中iASPP mRNA表达水平,探索iASPP在卵巢癌发生中的作用。从细胞水平进一步研究其作用机制,用siRNA干扰的方法使iASPP表达降低后用Hoechst 33342和CCK-8分别检测iASPP沉默后对人类卵巢癌细胞株OVCA420的影响。结果显示,卵巢癌组织中iASPP表达较癌旁组织明显增高;iASPP沉默后,细胞凋亡增多,细胞增殖水平降低。据此推断,iASPP mRNA水平对卵巢癌的临床诊断具有一定价值,可作为卵巢癌治疗的一个重要靶点。  相似文献   

15.
Conventional anticancer treatments, such as radiotherapy and chemotherapy, have significantly improved cancer therapy. Nevertheless, the existing traditional anticancer treatments have been reported to cause serious side effects and resistance to cancer and even to severely affect the quality of life of cancer survivors, which indicates the utmost urgency to develop effective and safe anticancer treatments. As the primary focus of cancer nanotheranostics, nanomaterials with unique surface chemistry and shape have been investigated for integrating cancer diagnostics with treatment techniques, including guiding a prompt diagnosis, precise imaging, treatment with an effective dose, and real-time supervision of therapeutic efficacy. Several theranostic nanosystems have been explored for cancer diagnosis and treatment in the past decade. However, metal-based nanotheranostics continue to be the most common types of nonentities. Consequently, the present review covers the physical characteristics of effective metallic, functionalized, and hybrid nanotheranostic systems. The scope of coverage also includes the clinical advantages and limitations of cancer nanotheranostics. In light of these viewpoints, future research directions exploring the robustness and clinical viability of cancer nanotheranostics through various strategies to enhance the biocompatibility of theranostic nanoparticles are summarised.  相似文献   

16.
17.
18.
随着纳米医学的快速发展,纳米诊疗材料因其兼具诊断和治疗等多功能性而受到越来越多的关注.铋(Bi)基纳米材料具有优异的光学、电学和磁学性质,在肿瘤的诊疗一体化领域具有广阔的应用前景.我们总结了Bi基纳米材料常用的构建方法,重点介绍了其在计算机断层扫描(CT)成像、光声(PA)成像、放射疗法(RT)、光热疗法(PTT)及协...  相似文献   

19.
Biomimetic nanoparticles have recently emerged as a novel drug delivery platform to improve drug biocompatibility and specificity at the desired disease site, especially the tumour microenvironment. Conventional nanoparticles often encounter rapid clearance by the immune system and have poor drug-targeting effects. The rapid development of nanotechnology provides an opportunity to integrate different types of biomaterials onto the surface of nanoparticles, which enables them to mimic the natural biological features and functions of the cells. This mimicry strategy favours the escape of biomimetic nanoparticles from clearance by the immune system and reduces potential toxic side effects. Despite the rapid development in this field, not much has progressed to the clinical stage. Thus, there is an urgent need to develop biomimetic-based nanomedicine to produce a highly specific and effective drug delivery system, especially for malignant tumours, which can be used for clinical purposes. Here, the recent developments for various types of biomimetic nanoparticles are discussed, along with their applications for cancer imaging and treatments.  相似文献   

20.
The PROteolysis TArgeting Chimeras (PROTACs) is an innovative technique for the selective degradation of target proteins via the ubiquitin–proteasome system. Compared with traditional protein inhibitor drugs, PROTACs exhibit advantages in the efficacy and selectivity of and in overcoming drug resistance in cancer therapy, providing new insights into the discovery of anti-cancer drugs. In the last two decades, many PROTAC molecules have been developed to induce the degradation of cancer-related targets, and they have been subjected to clinical trials. Here, we comprehensively review the historical milestones and latest updates in PROTAC technology. We focus on the structures and mechanisms of PROTACs and their application in targeting tumor-related targets. We have listed several representative PROTACs based on CRBN, VHL, MDM2, or cIAP1 E3 ligases, and PROTACs that are undergoing anti-cancer clinical trials. In addition, the limitations of the current research, as well as the future research directions are described to improve the PROTAC design and development for cancer therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号