首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Electrospun poly(dl-lactide-co-glycolide) (PLGA) microfibers have been explored as extra cellular matrix mimicking scaffolding systems for tissue engineering application. However, the hydrophobic nature of PLGA can be limiting in terms of protein adsorption. Hence, blending of PLGA with a hydrophilic polymer (Pluronic®) prior to electrospinning has been explored as a potential strategy to impart hydrophilicity to PLGA microfibers. In this study, PLGA (85/15) was blended with small quantities (0.5-2% w/v) of Pluronic® F-108 (PF-108) and electrospun into microfibers. Blending of PF-108 demonstrated a significant decrease in the surface hydrophilicity of microfibers as was evidenced by an increase in wetting tension. Surface analysis using XPS indicated the presence of PF-108 in the bulk of the fibers in addition to the surface of the fibers. The results of the water uptake studies indicated that the water uptake capacity and consequential fiber swelling was significantly increased in the presences of PF-108. The in vitro degradation studies demonstrated that the trend in molecular weight loss was not significantly influenced by the presence of small quantities of PF-108. Therefore, blending of PLGA with PF-108 could be an effective technique for surface modification of electrospun PLGA microfibers without compromising on the other advantages of PLGA.  相似文献   

2.
Mechanism of adhesion between polymer fibers at nanoscale contacts   总被引:1,自引:0,他引:1  
Adhesive force exists between polymer nano/microfibers. An elaborate experiment was performed to investigate the adhesion between polymer nano/microfibers using a nanoforce tensile tester. Electrospun polycaprolactone (PCL) fibers with diameters ranging from 0.4-2.2 μm were studied. The response of surface property of electrospun fiber to the environmental conditions was tracked by FTIR and atomic force microscopy (AFM) measurements. The effect of temperature on molecular orientation was examined by wide angle X-ray diffraction (WAXD). The adhesive force was found to increase with temperature and pull-off speed but insensitive to the change of relative humidity, and the abrupt increase of adhesion energy with temperature accompanied by a reduced molecular orientation in the amorphous part of fiber was observed. Results show that adhesion is mainly driven by van der Waals interactions between interdiffusion chain segments across the interface.  相似文献   

3.
《先进技术聚合物》2018,29(1):442-450
Electrospun biodegradable fiber mesh is a promising alternative scaffold for delivering progenitor cells for repairing damaged or diseased tissue, but its cripple mechanical stability has not met the requirement of tissue engineering yet. In this work, the well‐defined poly(ε‐caprolactone)‐branched poly(methyl methacrylate‐co‐hydroxyethylmethacrylate) (PCL‐PMH) has been successfully synthesized to toughen electrospun poly(l ‐lactide) (PLLA) fiber membrane. Characterization of the obtained nanofibrous meshes indicates that PCL‐PMH and PLLA can be well blended to make smooth fibers, and fibrous diameter vary little with blending PCL‐PMH. The aggregation state of two macromolecules is closely correlated with blend ratio, molecular structure, and molecular weight of PCL‐PMH, and only when PCL‐PMH and PLLA form good interfacial adhesion can PMH give full play to its potential for toughening the fiber membrane. The tensile strength and elongation at break of the blend are 6.20 MPa and 63.40% under the optimal conditions, respectively, and it also exhibits the representative feature of toughness materials. The blending fiber membrane is as no cytotoxic as original PLLA. This work will provide a new way for toughness of electrospun fiber membrane in practice.  相似文献   

4.
The purpose of this study is to investigate the effect of composition poly(D,L-lactide-co-glycolide)/poly(ε-caprolactone)(PLGA/PCL)blending on the morphology,shrinkage and degradation behaviors of the electrospun fibers.With the increase of PLGA content in the composite fibers,the average diameter of the electrospun fibers increased from 1.35 μm to 1.95μm.The serious shrinking of the electrospun PLGA meshes could be circumvented by adding 20% PCL in the fibers,resulting from the semi-crystalline nature of PCL.The degradation rate of the electrospun meshes could be modulated by PLGA/PCL composition.In addition,the electrospun meshes containing 20% PCL displayed stable dimensional morphology with degradation.  相似文献   

5.
The purpose of this study is to investigate the effect of composition poly(D,L-lactide-co-glycolide)/poly(ε- caprolactone)(PLGA/PCL)blending on the morphology,shrinkage and degradation behaviors of the electrospun fibers. With the increase of PLGA content in the composite fibers,the average diameter of the electrospun fibers increased from 1.35μm to 1.95μm.The serious shrinking of the electrospun PLGA meshes could be circumvented by adding 20% PCL in the fibers,resulting from the semi-crystalline nature ...  相似文献   

6.
Human serum albumin (HSA) introduced to the fibers produced by electrospinning from HSA and polycaprolactone (PCL) solutions in hexafluoroisopropanol has been studied in terms of its structure, release from the fibers, stability of interaction with basic polymer, accessibility for protease attack, and cellular receptors, as well as dependence of the studied parameters on the protein concentration in fibers. A limited part of the protein leaves the fibers right after soaking with water, whereas the remaining protein stays tightly bound to fibers for a long time because protein nanoparticles are tightly integrated with PCL, as shown by small‐angle X‐ray scattering. As has been demonstrated, the proteins leave the fibers in complexes with PCL. X‐ray photoelectron spectroscopy demonstrates that the protein concentration on the fiber surface is higher than the concentration in electrospinning solution. The surface‐exposed protein is recognized by cell receptors and is partially hydrolyzed by proteinase K. The data on pulse protein release, presence of PCL in the protein released from matrixes, overrepresentation of the protein on the fiber surface, and tight interaction of protein with PCL may be useful for rational design of electrospun scaffolds intended for drug delivery and tissue engineering. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Antioxidant activity is an important feature for food contact materials such as packaging, aiming to preserve freshness and retard food spoilage. Common bioactive agents are highly susceptible to various forms of degradation; therefore, protection is required to maintain functionality and bioavailability. Poly(ε-caprolactone) (PCL), a biodegradable GRAS labeled polymer, was used in this study for encapsulation of α-tocopherol antioxidant, a major component of vitamin E, in the form of electrospun fibers. Rheological properties of the fiber forming solutions, which determine the electrospinning behavior, were correlated with the properties of electrospun fibers, e.g., morphology and surface properties. Interactions through hydrogen bonds were evidenced between the two components. These have strong effect on structuration of macromolecular chains, especially at low α-tocopherol amounts, decreasing viscosity and elastic modulus. Intra-molecular interactions in PCL strengthen at high α-tocopherol amounts due to decreased solvation, allowing good structural recovery after cease of mechanical stress. Morphologically homogeneous electrospun fibers were obtained, with ~6 μm average diameter. The obtained fibers were highly hydrophobic, with fast release in 95% ethanol as alternative simulant for fatty foods. This induced good in vitro antioxidant activity and significant in vivo reduction of microbial growth on cheese, as determined by respirometry. Therefore, the electrospun fibers from PCL entrapping α-tocopherol as bioactive agent showed potential use in food packaging materials.  相似文献   

8.
Ambroxol is a pharmacological chaperone (PC) for Gaucher disease that increases lysosomal activity of misfolded β‐glucocerebrosidase (GCase) while displaying a safe toxicological profile. In this work, different poly(ε‐caprolactone) (PCL)‐based systems are developed to regulate the sustained release of small polar drugs in physiological environments. For this purpose, ambroxol is selected as test case since the encapsulation and release of PCs using polymeric scaffolds have not been explored yet. More specifically, ambroxol is successfully loaded in electrospun PCL microfibers, which are subsequently coated with additional PCL layers using dip‐coating or spin‐coating. The time needed to achieve 80% release of loaded ambroxol increases from ≈15 min for uncoated fibrous scaffolds to 3 days and 1 week for dip‐coated and spin‐coated systems, respectively. Furthermore, it is proven that the released drug maintains its bioactivity, protecting GCase against induced thermal denaturation.  相似文献   

9.
In this work, porous poly(ɛ-caprolactone) (PCL)/Eudragit RS 100 (ERS-100) microcapsules containing tulobuterol base as a model drug were prepared by a solvent evaporation method and the effect of the quaternary ammonium groups of ERS-100 on the release behaviors of the microcapsules was investigated. The microcapsules prepared with PCL alone showed a stable and smooth surface, whereas porous microcapsules were formed with the addition of ERS-100. Drug loading and encapsulation efficiency of the microcapsules were slightly decreased with an increase of ERS-100 content, resulting from an increase in the porosity of the microcapsules. In an acidic release medium, PCL microcapsules showed slow drug release, whereas PCL/ERS-100 microcapsules showed a faster release rate with an increasing ERS-100 content. These behaviors are likely due to an increase in the diffusion rate of the drugs stemming from an increased hydration of the microcapsules, which results from the interaction between the carboxyl group of the release medium and the quaternary ammonium group of ERS-100.  相似文献   

10.
利用静电纺丝技术制备了一种具有抗菌性能的氧化锌(ZnO)/聚乳酸(PLA)/聚己内酯(PCL)载药微纳米纤维膜,并通过扫描电子显微镜(SEM)、X射线衍射(XRD)和傅里叶变换红外光谱(FTIR)分别对复合膜的表面形态、元素组成和化学结构进行表征。通过抗菌实验评价了复合膜的抗菌性能,用紫外分光光度计测试复合膜在体外的药物释放行为。结果显示,以物理共混的方式将ZnO和氢溴酸高乌甲素(LAH)成功载入复合微纳米纤维;与PLA/PCL复合微纳米纤维膜相比,ZnO/PLA/PCL复合微纳米纤维膜表现出更好的抗菌效率。当ZnO含量为10%(wt)时,复合微纳米纤维膜具有最佳的抗菌性能;药物释放性能结果表明,ZnO/PLA/PCL复合微纳米纤维膜具有良好的药物缓释性能。  相似文献   

11.
Tian T  Deng J  Xie Z  Zhao Y  Feng Z  Kang X  Gu Z 《The Analyst》2012,137(8):1846-1852
We have developed a solid-phase extraction method based on conductive polypyrrole (PPy) hollow fibers which were fabricated by electrospinning and in situ polymerization. The electrospun poly (e-caprolactone) (PCL) fibers were employed as templates for the in situ surface polymerization of PPy under mechanical stirring or ultrasonication to obtain burr-shaped or smooth fiber shells, respectively. Hollow PPy fibers, achieved by removing the PCL templates, were the ideal sorbents for solid phase extraction of polar compounds due to their inherent multi-functionalities. By using the hollow PPy fibers, two important neuroendocrine markers of behavioural disorders, 5-hydroxyindole-3-acetic acid and homovanillic acid, were successfully extracted. Under the optimized conditions, the absolute recoveries of the above two neuroendocrine markers were 90.7% and 92.4%, respectively, in human plasma. Due to its simplicity, selectivity and sensitivity, the method may be applied to quantitatively analyse the concentrations of polar species in complex matrix samples.  相似文献   

12.
以芳氧基稀土三(2,6-二叔丁基-4-甲基苯氧基)镧(La(OAr)3)为催化剂,通过加入少量(8.5 mol%)碳酸2,2-二甲基三亚甲基酯(DTC)与ε-己内酯(CL)进行无规共聚合,成功制备了低结晶度的脂肪族内酯-碳酸酯无规共聚酯(PCD)材料,并用1H-NMR、SEC、DSC和WAXS证明了产物的结构和性能.以...  相似文献   

13.
Degradation profiles and surface wettability are critical for optimal application of electrospun fibrous mats as drug carriers, tissue growth scaffolds and wound dressing materials. The effect of surface morphologies and chemical groups on surface wettability, and the resulting matrix degradation profiles were firstly assessed for electrospun poly(d,l-lactide) (PDLLA) and poly(d,l-lactide)-poly(ethylene glycol) (PELA) fibers. The air entrapment between the fiber interfaces clarified the effects of various surface morphologies on the surface wettability. Chemical groups with lower binding energy were enriched on the fiber surface due to the high voltage of the electrospinning process, and a surface erosion pattern was detected in the degradation of electrospun PDLLA fibers, which was quite different from the bulk degradation pattern for other forms of PDLLA. Contributed by the hydrophilic poly(ethylene glycol) segments, the degradation of electrospun PELA fibers with hydrophobic surface followed a pattern different from surface erosion and typical bulk degradation.  相似文献   

14.
The aim of this work is to develop a drug‐loaded silk fibroin fibrous membrane (DSFM) that can be attached to the surface of an anal fistula plug to improve the treatment of Crohn's disease (CD). Curcumin (CUR) and 5‐aminosalicylic acid (5‐ASA)‐loaded silk fibroin (SF) membranes are coaxially electrospun onto the surface of a braided silk filament plug. The membranes show a predominant structure of random coil and silk I conformation. The concentration of CUR/5‐ASA (weight ratio of 1/1) in the SF solution is optimized to 0.4, 0.9, and 1.9 wt%. The morphologies, secondary structures, and in vitro drug release properties of the membranes are examined. Sectional images of fibers in the membranes show core–shell structures. The coaxial electrospinning process does not alter the chemical characteristics of the drugs. The dual‐drugs encapsulated in the membranes are released in a steady and sustainable manner, and the cumulative release rate is improved by the increased drug loading. The membranes exhibit no cytotoxicity, thereafter increase the viability of human fibroblasts on the DSFMs. These SF membranes with core–shell structure and functional encapsulation of CUR and 5‐ASA should be useful for further studies toward the treatment of CD.  相似文献   

15.
This work examines the release of a model water-soluble compound from electrospun polymer nanofiber assemblies. Such release attracts attention in relation to biomedical applications, such as controlled drug delivery. It is also important for stem cell attachment and differentiation on biocompatible electrospun nanofiber scaffolds containing growth factors, which have been encapsulated by means of electrospinning. Typically, the release mechanism has been attributed to solid-state diffusion of the encapsulated compound from the fibers into the surrounding aqueous bath. Under this assumption, a 100% release of the encapsulated compound is expected in a certain (long) time. The present work focuses on certain cases where complete release does not happen, which suggests that solid-state diffusion may not be the primary mechanism at play. We show that in such cases the release rate can be explained by desorption of the embedded compound from nanopores in the fibers or from the outer surface of the fibers in contact with the water bath. After release, the water-soluble compound rapidly diffuses in water, whereas the release rate is determined by the limiting desorption stage. A model system of Rhodamine 610 chloride fluorescent dye embedded in electrospun monolithic poly(methylmethacrylate) (PMMA) or poly(caprolactone) (PCL) nanofibers, in nanofibers electrospun from PMMA/PCL blends, or in core-shell PMMA/PCL nanofibers is studied. Both the experimental results and theory point at the above mentioned desorption-related mechanism, and the predicted characteristic time, release rate, and effective diffusion coefficient agree fairly well with the experimental data. A practically important outcome of this surface release mechanism is that only the compound on the fiber and pore surfaces can be released, whereas the material encapsulated in the bulk cannot be freed within the time scales characteristic of the present experiments (days to months). Consequently, in such cases, complete release is impossible. We also demonstrate how the release rate can be manipulated by the polymer content and molecular weight affecting nanoporosity and the desorption enthalpy, as well as by the nanofiber structure (monolithic fibers, fibers from polymer blends, and core-shell fibers). In particular, it is shown that, by manipulating the above parameters, release times from tens of hours to months can be attained.  相似文献   

16.
Eri cocoons were prepared into short fibers and subsequently blended with cotton fiber in order to develop the new fiber blended yarn in the short spinning system. The Eri and cotton fibers were blended using the drawframe blending with varying blending factors, viz. blending composition (0–100%) and yarn counts (30 and 50 tex). The results showed that Eri fiber which was longer and stronger than cotton fiber, affected the fiber distribution in the yarn cross-section. The mechanical properties of the blended fibers and yarns increased with increasing silk content. Longer fibers of Eri silk tended to move towards the yarn core, especially at silk content higher than 50%. Moreover, stronger and more extensible Eri silk fiber gave an advantage to the improvement of mechanical properties of those blended yarns with silk content higher than 50%. However, with increasing silk content, the blended yarns were more irregular as shown in %CV. Concerning the yarn count effect, the higher yarn count of 50 tex resulted in a more regular yarn with higher yarn strength than that of 30 tex. The plain-woven fabrics were prepared using the blended yarns as a weft yarn and the cotton yarn or silk yarn as a warp yarn. The mechanical properties of those woven fabrics were characterized in order to study the influence of silk contents. The results showed that tensile strength, %elongation and tear strength of woven fabrics using the blended yarn were increased with an increase in silk content. This is an advantage of Eri silk in the aspect of rendering the strength to the blended yarns and fabrics.  相似文献   

17.
Aligned poly(L-lactide) (PLLA)/poly(?-caprolactone) (PCL)/hydroxyapaite (HA) composite fibrous membranes were fabricated by electrospinning. Their morphology, thermal stability, mechanical properties, hydrophilic properties and biocompatibility were investigated. The electrospun fibers are highly aligned and the HA are oriented along the fiber axis. When HA are incorporated, the PLLA/PCL/HA composite fibers become thinner due to the increased conductivity. In addition, the aligned HA reinforce the electrospun fibrous membranes. The larger porosity and higher hydrophilic properties induced by HA in the electrospun fibers have improved the degradation of the PLLA/PCL/HA fibrous membranes which have no toxic effect on proliferation of adipose-derived stem cells.  相似文献   

18.
Polycaprolactone (PCL) is a biodegradable polyester emerging into biomedical applications because of its biodegradability, biocompatibility, chemical stability, thermal stability and good mechanical properties. Electrospinning is a versatile method using electrostatic forces for fabricating continuous ultrafine fibers that offer various advantages such as high surface area and high porosity. Thus, this method has gained interest for use in many fields, especially biomedical fields. This review focuses on researches and studies in electrospinning, PCL, electrospinning of PCL and also biomedical applications of the electrospun PCL fiber mats. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
The design of porous microcapsules with selective mass transfer and mechanical robustness for enzyme encapsulation is highly desired for biocatalysis, yet the construction remains challenging. Herein, we report the facile fabrication of porous microcapsules by assembling covalent organic framework (COF) spheres at the interfaces of emulsion droplets followed by interparticle crosslinking. The COF microcapsules could offer an enclosed aqueous environment for enzymes, with size-selective porous shells that allow for the fast diffusion of substrates and products while excluding larger molecules such as protease. Crosslinking of COF spheres not only enhances the structural stability of capsules but also imparts enrichment effects. The enzymes encased in the COF microcapsules show enhanced activity and durability in organic media as verified in both batch reaction and continuous-flow reaction. The COF microcapsules offer a promising platform for the encapsulation of biomacromolecules.  相似文献   

20.
邵林军  吴健  徐志康 《高分子学报》2010,(11):1283-1287
以单氨基卟啉作为引发剂,引发L-谷氨酸-γ-十八烷酯N-羧基内酸酐(SLGNCA)开环聚合合成卟啉化聚(L-谷氨酸-γ-十八烷酯)(PSLG),进一步通过静电纺丝制备其纤维膜.相比于自由氨基卟啉,金属氨基卟啉尤其是钴氨基卟啉引发得到的PSLG具有更高的分子量.紫外-可见光谱和荧光光谱研究表明,卟啉化PSLG依然具有卟啉独特的光谱性能,静电纺后可以制备具有均匀红色荧光的微米级纤维.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号