首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
小波和EMD的滤波特性在轴承故障诊断中的比较   总被引:1,自引:0,他引:1  
通过仿真实验将小波变换和经验模态分解(EMD)方法分解信号的能力进行了比较,并将这种滤波特性应用于旋转机械的故障诊断中,结合包络谱分析,比较了两者对于滚动轴承内圈故障的诊断效果.仿真及轴承实验结果表明EMD方法在滤波的自适应性、分解结果的准确性以及诊断效果等方面均具有优势,更重要的是它分离出的主要分量物理意义明确,反映了信号的真实内涵.  相似文献   

2.
基于EMD方法的混沌信号中周期分量的提取   总被引:1,自引:0,他引:1  
提出一种从Duffing振子产生的混沌信号中提取谐波分量的方法.依据任何信号由不同的固有简单振动模态组成的概念,利用经验模式分解(EMD)方法,将混沌信号分离为不同的内在模态函数(IMF),并在特定参数下从中分解出单一频率成分的谐波信号,从而成功地将混沌信号和谐波分量分离.仿真实验都表明该方法非常有效.  相似文献   

3.
针对滚动轴承滚珠磨损故障特征难以提取的问题,提出一种基于多脉冲激励法下的Volterra级数核的求解算法.该方法是一种非线性系统模型的“交叉”诊断法,利用轴承系统输入输出的采样信号,建立Volterra非线性辨识系统模型,并运用多脉冲激励Volterra低阶核求解算法,将得到的低阶核通过时域和频域进行对比来判断轴承当前所处的运行状态.该文以无心车床主轴轴承为例进行实验验证,并与传统的小波分析法对比得出:多脉冲激励法能够方便准确地提取轴承的故障特征,该方法对此类故障的诊断具有一定的借鉴意义.  相似文献   

4.
The normal operation of propulsion gearboxes ensures the ship safety. Chaos indicators could efficiently indicate the state change of the gearboxes. However, accurate detection of gearbox hybrid faults using Chaos indicators is a challenging task and the detection under speed variation conditions is attracting considerable attentions. Literature review suggests that the gearbox vibration is a kind of nonlinear mixture of variant vibration sources and the blind source separation (BSS) is reported to be a promising technique for fault vibration analysis, but very limited work has addressed the nonlinear BSS approach for hybrid faults decoupling diagnosis. Aiming to enhance the fault detection performance of Chaos indicators, this work presents a new nonlinear BSS algorithm for gearbox hybrid faults detection under a speed variation condition. This new method appropriately introduces the kernel spectral regression (KSR) framework into the morphological component analysis (MCA). The original vibration data are projected into the reproducing kernel Hilbert space (RKHS) where the instinct nonlinear structure in the original data can be linearized by KSR. Thus the MCA is able to deal with nonlinear BSS in the KSR space. Reliable hybrid faults decoupling is then achieved by this new nonlinear MCA (NMCA). Subsequently, by calculating the Chaos indicators of the decoupled fault components and comparing them with benchmarks, the hybrid faults can be precisely identified. Two specially designed case studies were implemented to evaluate the proposed NMCA-Chaos method on hybrid gear faults decoupling diagnosis. The performance of the NMCA-Chaos was compared with state of art techniques. The analysis results show high performance of the proposed method on hybrid faults detection in a marine propulsion gearbox with large speed variations.  相似文献   

5.
Robust state estimation and fault diagnosis are challenging problems in the research into hybrid systems. In this paper a novel robust hybrid observer is proposed for a class of hybrid systems with unknown inputs and faults. Model uncertainties, disturbances and faults are represented as structured unknown inputs. The robust hybrid observer consists of a mode observer for mode identification and a continuous observer for continuous state estimation and mode transition detection. It is shown that the mode can be identified correctly and the continuous state estimation error is exponentially uniformly bounded. Robustness to model uncertainties and disturbances can be guaranteed for the hybrid observer by disturbance decoupling. Furthermore, the detectability and mode identifiability conditions are rigorously analyzed. On the basis of the robust hybrid observer, a robust fault detection and isolation scheme is presented also in the paper. Simulations of a hybrid four-tank system show the proposed approach is effective.  相似文献   

6.
Robust state estimation and fault diagnosis are challenging problems in the research of hybrid systems. In this paper, a novel robust hybrid observer is proposed for a class of uncertain hybrid nonlinear systems with unknown mode transition functions, model uncertainties and unknown disturbances. The observer consists of a mode observer for discrete mode estimation and a continuous observer for continuous state estimation. It is shown that the mode can be identified correctly and the continuous state estimation error is exponentially uniformly bounded. Robustness to unknown transition functions, model uncertainties and disturbances can be guaranteed by disturbance decoupling and selecting proper thresholds. The transition detectability and mode identifiability conditions are rigorously analyzed. Based on the robust hybrid observer, a robust fault diagnosis scheme is presented for faults modeled as discrete modes with unknown transition functions, and the analytical properties are investigated. Simulations of a hybrid three-tank system demonstrate that the proposed approach is effective.  相似文献   

7.
This paper presents a fault diagnosis architecture for a class of hybrid systems with nonlinear uncertain time-driven dynamics, measurement noise, and autonomous and controlled mode transitions. The proposed approach features a hybrid estimator based on a modified hybrid automaton framework. The fault detection scheme employs a filtering approach that attenuates the effect of the measurement noise and allows tighter mode-dependent thresholds for the detection of both discrete and parametric faults while guaranteeing no false alarms due to modeling uncertainty and mode mismatches. Both the hybrid estimator and the fault detection scheme are linked with an autonomous guard events identification (AGEI) scheme that handles the effects of mode mismatches due to autonomous mode transitions and allows effective mode estimation. Finally, the fault isolation scheme anticipates which fault events may have occurred and dynamically employs the appropriate isolation estimators for isolating the fault by calculating suitable thresholds and estimating the parametric fault magnitude through adaptive approximation methods. Simulation results from a five-tank hybrid system illustrate the effectiveness of the proposed approach.  相似文献   

8.
We propose a chaos time-domain reflectometry (CTDR) for locating faults on live wires. This method uses a chaotic output of an improved Colpitts oscillator as probe signal, and detects wire faults by correlating a duplicate with the echo of the probe signal. Benefiting from the anti-jamming of the correlation function of the wideband chaos, fault location on live wires can be achieved. We experimentally demonstrate the detection for live wires in a digital communication system, in which a type of digital signal named high density bipolar of order 3 (HDB3) is transmitted. The effects of the chaotic probe signal on the bit error rate (BER) of the transmitted HDB3 at different rates are analyzed. Meanwhile, the influences of the backward HDB3 reflected by wiring faults on the signal-noise-ratio (SNR) of CTDR measurement are examined experimentally. The results show that fault detection on live wires is achieved when the power of the chaotic probe signal is about from -24.8 dB to -13.5 dB lower than that of the transmitted digital signal. In this case, the BER is kept less than 3E-10, and the SNR of CTDR is higher than 3 dB. Besides, the auto-correlation properties of the improved Colpitts oscillator at different states are investigated experimentally to explore the suitable chaotic states for the CTDR.  相似文献   

9.
The goal in many fault detection and isolation schemes is to increase the isolation and identification speed. This paper, presents a new approach of a nonlinear model based adaptive observer method, for detection, isolation and identification of actuator and sensor faults. Firstly, we will design a new method for the actuator fault problem where, after the fault detection and before the fault isolation, we will try to estimate the output of the instrument. The method is based on the formation of nonlinear observer banks where each bank isolates each actuator fault. Secondly, for the sensor problem we will reformulate the system by introducing a new state variable, so that an augmented system can be constructed to treat sensor faults as actuator faults. A method based on the design of an adaptive observers’ bank will be used for the fault treatment. These approaches use the system model and the outputs of the adaptive observers to generate residues. Residuals are defined in such way to isolate the faulty instrument after detecting the fault occurrence. The advantages of these methods are that we can treat not only single actuator and sensor faults but also multiple faults, more over the isolation time has been decreased. In this study, we consider that only abrupt faults in the system can occur. The validity of the methods will be tested firstly in simulation by using a nonlinear model of waste water treatment process with and without measurement noise and secondly with the same nonlinear model but by using this time real data.  相似文献   

10.
锻压机床由于生产效率高和材料利用率高的特点,被广泛应用于各领域.然而,锻压机床发生故障时,其故障种类繁多、故障数据量大,所以对锻压机床故障源的快速、准确诊断较困难.针对该问题,文章提出一种将故障树分析法和混沌粒子群算法相融合的方法,对锻压机床的故障源进行故障诊断.该方法是先通过故障树分析法对锻压机床的故障进行分析从而得到故障模式及其故障概率,然后由得到的故障模式和已知的故障维修经验分析归纳出故障模式的学习样本,再根据得到的故障概率运用混沌粒子群算法的遍历性快速、准确地诊断出锻压机床发生故障的精确位置.文章提出的方法以锻压机床的伺服系统为例进行了故障诊断实验,将该实验结果与遗传算法、粒子群算法进行对比.实验结果表明,文章的算法在锻压机床伺服系统的故障诊断中准确度更高、速度更快.  相似文献   

11.
An engineering method is proposed for calculating the contact creep of plastic balls used in rolling bearings. The method is based on empirical expressions relating the relative creep strain with the specific load and its duration of action. The complex contact-creep characteristics of the material are obtained by means of simple laboratory tests.Moscow Bauman Higher Technical College. Translated from Mekhanika Polimerov, No. 3, pp. 498–504, May–June, 1969.  相似文献   

12.
An empirical mode decomposition (EMD) method based on Multi-Quadrics radial basis function (MQ-RBF) quasi-interpolation (the Quasi-MQ EMD method) is presented and applied to similarity analysis of DNA sequences. The MQ-RBF quasi-interpolation is taken to approximate the extrema envelopes during the intrinsic mode function (IMF) sifting process. Our method is simple, easy to implement, and does not require solving any linear system of equations. Then we use the classic EMD method and our method to compare the local similarities among DNA sequences respectively. The work tests our method’s suitability and better performance for local similarity analysis of DNA sequences by using the mitochondria of four different species.  相似文献   

13.
The empirical mode decomposition (EMD) is a powerful tool in signal processing. Despite its algorithmic origin making its theoretical analysis and formulation very difficult, a few recent works has contributed to its theoretical framework. Herein, the former local mean is formulated in a more convenient way by introducing operators to calculate local upper and lower envelopes. This enables the use of differential calculus and other classical calculations on the new local mean. Based on its more accurate formulation, a partial differential equation (PDE) consistency result is provided to approximate the sifting process iterations, without any envelope interpolation. In addition, a new stopping criterion based on the introduced local mean is proposed. This new criterion is a local measure and resolves the null integral conservative property of the previous derived PDE, which made any signal having a null integral be a PDE-based mode. Moreover, the δ inner model parameter is now linked to the signal intrinsic properties, providing to the latter a physical meaning and making the proposed model keep the auto-adaptive property of the EMD. New decomposition modes are now analytically and fully characterized, and also interpolation free. Finally, properties of the interpolation free PDE model are presented. Results obtained with our proposed approach by explicit computations thanks to the eigendecomposition of the Laplacian operator, and also by numerical resolution of the derived PDE, show noticeable improvements for both stationary and non stationary signals, in comparison to the former EMD algorithm.  相似文献   

14.
Due to the strong non-linear, complexity and non-stationary characteristics of wind farm power, a hybrid prediction model with empirical mode decomposition (EMD), chaotic theory, and grey theory is constructed. The EMD is used to decompose the wind farm power into several intrinsic mode function (IMF) components and one residual component. The grey forecasting model is used to predict the residual component. For the IMF components, identify their characteristics, if it is chaotic time series use largest Lyapunov exponent prediction method to predict. If not, use grey forecasting model to predict. Prediction results of residual component and all IMF components are aggregated to produce the ultimate predicted result for wind farm power. The ultimate predicted result shows that the proposed method has good prediction accuracy, can be used for short-term prediction of wind farm power.  相似文献   

15.
This paper deals with the parametrization of balanced multiwavelets and different properties associated with them. We introduce the property balancing symmetry and orthogonal properties of multiwavelet and link these properties to the matrix of the low pass synthesis multifilter. Using these new results, we present the parametrization of orthogonal multiwavelets of flip-symmetry with length two and three. This is a direct construction method, making the construction of the balanced multiwavelet as easy as the scalar wavelet.  相似文献   

16.
Feature extraction leads to the loss of statistical information of raw data and ignores the sampling uncertainty and the fluctuations in the signal over time in mechanical fault diagnosis. In this paper, novel modeling methods for mechanical signals based on probability box theory were proposed to solve the above problem. First, the type of random distribution of the bearing signals were analyzed. Then, a Dempster-Shafer structure was obtained to establish a probability box model. To address the identification difficulty of the type of random distribution for the bearing signals, a second probability box model was established based on a vector consisting of features from the bearing signals. If the data are not found to follow a random distribution, a third modeling method based on the definition of probability boxes was proposed. The effectiveness and applicability of the three proposed models were compared with experimental data from rolling element bearings. The combination of probability box theory and mechanical fault diagnosis theory can open up a new research direction for mechanical fault diagnosis.  相似文献   

17.
This paper focuses on the fault estimation problem for switched systems with partially unknown nonlinear dynamics, actuator and sensor faults, simultaneously. The fault estimation observers are constructed, in which the observer dimension is not fixed and can be selected in a certain range. Both the disturbance decoupling and disturbance attenuation are considered, where the unknown nonlinear dynamics can be decoupled and the effect of modeling error and measurement disturbance is attenuated. Based on the average dwell time and the piecewise Lyapunov function, the observer parameter matrices can be calculated by solving LMIs and matrix equations. Finally, two examples are listed to verify the proposed fault estimation approach.  相似文献   

18.
提出基于奇偶校验的方法对Petri网控制器进行故障检测.设计出满足包含标识向量和Parikh向量的线性约束的Petri网控制器;建立一个包含一定数量库所的附加Petri网控制器以满足奇偶校验的编码要求;分别针对库所故障和变迁故障,选用不同的奇偶校验参数进行故障检测,并通过实例详细阐明了故障检测的过程.  相似文献   

19.
The ensemble empirical mode decomposition (EEMD) and its complete variant (CEEMDAN) are adaptive, noise-assisted data analysis methods that improve on the ordinary empirical mode decomposition (EMD). All these methods decompose possibly nonlinear and/or nonstationary time series data into a finite amount of components separated by instantaneous frequencies. This decomposition provides a powerful method to look into the different processes behind a given time series data, and provides a way to separate short time-scale events from a general trend. We present a free software implementation of EMD, EEMD and CEEMDAN and give an overview of the EMD methodology and the algorithms used in the decomposition. We release our implementation, libeemd, with the aim of providing a user-friendly, fast, stable, well-documented and easily extensible EEMD library for anyone interested in using (E)EMD in the analysis of time series data. While written in C for numerical efficiency, our implementation includes interfaces to the Python and R languages, and interfaces to other languages are straightforward.  相似文献   

20.
A wavelet method of detection and estimation of change points in nonparametric regression models under random design is proposed. The confidence bound of our test is derived by using the test statistics based on empirical wavelet coefficients as obtained by wavelet transformation of the data which is observed with noise. Moreover, the consistence of the test is proved while the rate of convergence is given. The method turns out to be effective after being tested on simulated examples and applied to IBM stock market data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号