首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
以不同分子量的端氢硅油(PDMS)和聚乙二醇二烯丙基醚(PEGDE)为原料,通过硅氢加成合成了系列双键封端的含有机硅和聚乙二醇(PEG)链段的多嵌段共聚物(PDMS-b-PEG)m,再用三甲氧基氢硅烷进行端基官能化,生成三甲氧基硅烷封端的多嵌段聚合物,即含PEG前驱物.含PEG前驱物、含氟前驱物(FMS-9922)与有机硅基体树脂通过缩合聚合制备了含PEG的氟硅双亲弹性防污涂层.通过核磁共振氢谱、红外光谱对PEG前驱物的结构进行了表征.吸水率、SEM-EDS和接触角测试考察了含PEG前驱物中疏水链段的长度,含氟前驱物的含量对涂层表面重排的影响,结果表明PEG前驱物中疏水链段越长,涂层的吸水率越低,在水中越稳定,且表面不易发生重排.而含氟前驱物的加入能促使PEG链段向表面方向迁移.抗蛋白、抗菌和抗藻附着性能测试表明:含有FMS-9922的样品防污性能均优于不含FMS-9922的样品,而且随着FMS-9922用量增加,涂层防污性能呈上升趋势;但是FMS-9922用量太高时,体系相容性下降,防污性能也随之变差,故FMS-9922的含量控制在7%为宜.  相似文献   

2.
Linear and branched poly(ethylene terephthalate) (PET) copolymers with polyethylene glycol) (PEG) methyl ether (700 or 2000 g/mol) end groups were synthesized using conventional melt polymerization. DSC analysis demonstrated that low levels of PEG end groups accelerated PET crystallization. The incorporated PEG end groups also decreased the crystallization temperature of PET dramatically, and copolymers with a high content of PEG (>17.6 wt%) were able to crystallize at room temperature. Rheological analysis demonstrated that the presence of PEG end groups effectively decreased the melt viscosities and facilitated melt processing. XPS and ATR-FTIR revealed that the PEG end groups tended to aggregate on the surface, and the surface of compression molded films containing 34.0 wt% PEG were PEG rich (85 wt% PEG). PEG end-capped PET (34.0 wt% PEG) and PET films were immersed into a fibrinogen solution (0.7 mg/mL BSA) for 72 h to investigate the propensity for protein adhesion. XPS demonstrated that the concentration of nitrogen (1.05%) on the surface of PEG endcapped PET film was statistically lower than PET (7.67%). SEM analysis was consistent with XPS results, and revealed the presence of adsorbed protein on the surface of PET films.  相似文献   

3.
Multicellular tumor spheroid (MCTS) mimics microenvironment for tumor formation and provides predictive insight for in vivo tests. The hanging drop (HD) method of spheroid generation is cost effective, but it is limited by a long time duration for spheroid development and a low rate of formation of larger spheroids. Toward addressing those limitations, thermoresponsive copolymers with poly(N‐isopropylacrylamide) (p(NIPA)) backbone are developed, to be used as additives in the MCTS formation via HD method. Upon investigation it is found that in the presence of the polymer, robust and compact spheroids are formed in a short duration of 48 h. Larger spheroids (350–600 µm) can be formed by increasing the number of cells. Spheroids are characterized for their 3D shape and different cellular layers, and drug uptake study is done to prove the efficacy of the spheroids generated in drug screening.  相似文献   

4.
Jin HJ  Cho YH  Gu JM  Kim J  Oh YS 《Lab on a chip》2011,11(1):115-119
This paper presents a multicellular spheroid chip capable of forming and extracting three-dimensional (3D) spheroids using removable cell trapping barriers. Compared to the conventional macro-scale spheroid formation methods, including spinning, hanging-drop, and liquid-overlay methods, the recent micro-scale spheroid chips have the advantage of forming smaller spheroids with better uniformity. The recent micro spheroid chips, however, have difficulties in extracting the spheroids due to fixed cell trapping barriers. The present spheroid chip, having two PDMS layers, uses removable cell trapping barriers, thereby making it easy to form and extract uniform and small-sized spheroids. We have designed, fabricated and characterized a 4 × 1 spheroid chip, where membrane cell trapping barriers are inflated at a pressure of 50 kPa for spheroid formation and are deflated at zero gauge pressure for simple and safe extraction of the spheroids formed. In this experimental study, the cell suspension of non-small lung cancer cells, H1650, is supplied to the fabricated spheroid chip in the pressure range 145-155 Pa. The fabricated spheroid chips collect the cancer cells in the cell trapping regions from the cell suspension at a concentration of 2 × 10(6) ml(-1), thus forming uniform 3D spheroids with a diameter of 197.2 ± 11.7 μm, after 24 h incubation at 5% CO(2) and 37°C environment. After the removal of the cell trapping barriers, the spheroids formed were extracted through the outlet ports at a cell inlet pressure of 5 kPa. The cells in the extracted spheroids showed a viability of 80.3 ± 7.7%. The present spheroid chip offers a simple and effective method of obtaining uniform and small-sized 3D spheroids for the next stage of cell-based biomedical research, such as gene expression analysis and spheroid inoculation in animal models.  相似文献   

5.
Lee KH  No da Y  Kim SH  Ryoo JH  Wong SF  Lee SH 《Lab on a chip》2011,11(6):1168-1173
Here, we present a novel and simple process of spheroid formation and in situ encapsulation of the formed spheroid without intervention. A hemispherical polydimethylsiloxane (PDMS) micromold was employed for the formation of uniform sized spheroids and two types of nano-porous membrane were used for the control of the crosslinking agent. We characterized the transport properties of the membrane, and the selection of alginate hydrogel as a function of gelation time, alginate concentration, and membrane type. Using the developed process and micromold, HepG2 cell spheroids were successfully formed and encapsulated in alginate without replating. This method allows spheroid encapsulation with minimal damage to the spheroid while maintaining high cell viability. We demonstrate the feasibility of this method in developing a bio-artificial liver (BAL) chip by evaluating viability and function of encapsulated HepG2 spheroids. This method may be applied to the encapsulation of several aggregating cell types, such as β-cells for islet formation and stem cells for embryonic body preservation, or as a model for tumor cell growth and proliferation in a 3D hydrogel environment.  相似文献   

6.
A series of poly(ethylene glycol) (PEG)/poly(L-lactic acid) (PLLA) multi-block copolymers were facilely synthesized using triphosgene as coupling agent. With the resulting multi-block copolymers, 10-hydroxycamptothecin (HCPT)-loaded nanoparticles were successfully prepared by dialysis method. The results obtained from dynamic light scattering (DLS) measurements confirmed that HCPT-loaded nanoparticles had the size of less than 200 nm and the average diameter decreased with increasing PLLA content. TEM images demonstrated that most of the drug-loaded nanoparticles had a distinct spherical shape and smooth surface without any aggregation. Atomic force microscopy (AFM) images further indicated that the nanoparticles were in spherical shape with smooth surface, no drug crystal was visualized on their surface. To investigate the drug state in HCPT-loaded nanoparticles, differential scanning calorimetry (DSC) and X-ray powder diffraction (XRD) measurements were carried out. The results from these tests suggested that HCPT was molecularly dispersed in the amorphous polymer matrix. Drug loading content and in vitro drug release behavior of HCPT-loaded nanoparticles showed dependence on polymer composition. Cytotoxicity test indicated that HCPT-loaded nanoparticles exhibited greatly superior cytotoxicity compared to free HCPT due to its molecular dispersion in the polymer matrix. Furthermore, the nanoparticles significantly increased the duration of the drug in circulation. All these results demonstrated that PEG/PLLA nanoparticles have great potential as promising delivery system for poorly soluble antitumor drugs.  相似文献   

7.
Poly(trimethylene terephthalate)/polyethylene glycol (PTT/PEG) copolymers, with PEG content ranging from 27.2 to 47.4 wt%, were synthesized by melt copolycondensation. Wide-Angle X-ray diffractometer revealed that all copolymers had the same crystal structure of homo-PTT at room temperature. All copolymers could form ring-banded spherulites, and band spacing increased with increasing PEG content at a given crystallization temperature. Nonisothermal crystallization morphology of copolymers was greatly influenced by cooling rate. When the cooling rate was 2.5 °C/min or lower, banded patterns were absent, whereas when the cooling rate was 20 °C/min or higher, a novel crystal morphology composed of non-banded spherulites (central part) and ring-banded spherulites with decreasing band spacing along the radial growth direction was observed. Moreover, the size of the non-banded spherulitic part decreased with increasing cooling rate. Finally, the nonisothermal crystallization kinetics of copolymers were analyzed and only the Mo method was satisfactory to accurately describe this system.  相似文献   

8.
Biodegradable poly(sebacic anhydride-co-caprolactone) (PSA-co-PCL) multi-block copolymers were prepared by condensation of acylated PSA and PCL prepolymers with different weight ratios. The homopolymer and copolymers were characterized by 1H-NMR, gel permeation chromatography (GPC), differential scanning calorimeter (DSC) and atom force microscope (AFM). 1H-NMR and GPC has indicated the formation of PSA-co-PCL multi-block copolymers, in which PSA and PCL segments are randomly distributed. The incorporation of PCL segments into the molecule chains even at a content of 20 wt% could significantly decrease the molecular weight distribution of the copolymer and increase its weight average molecular weight, as compared with PSA homopolymer. DSC has revealed that the melting temperature and degree of crystallinity for both SA and CL components are strongly composition dependent, implying the hindrance effect of the two components on crystallinity of each other. AFM observation has shown the difference in crystalline structures between PSA and PCL phases in the copolymers. In-vitro degradation tests performed at 37 °C in PBS buffer solution (pH 7.4, 0.1 M) have demonstrated the acceleration of degradation rate of the sample with increasing SA content in the copolymer.  相似文献   

9.
A common method of three-dimensional (3D) cell cultures is embedding single cells in Matrigel. Separated cells in Matrigel migrate or grow to form spheroids but lack cell-to-cell interaction, which causes difficulty or delay in forming mature spheroids. To address this issue, we proposed a 3D aggregated spheroid model (ASM) to create large single spheroids by aggregating cells in Matrigel attached to the surface of 96-pillar plates. Before gelling the Matrigel, we placed the pillar inserts into blank wells where gravity allowed the cells to gather at the curved end. In a drug screening assay, the ASM with Hepatocellular carcinoma (HCC) cell lines showed higher drug resistance compared to both a conventional spheroid model (CSM) and a two-dimensional (2D) cell culture model. With protein expression, cytokine activation, and penetration analysis, the ASM showed higher expression of cancer markers associated with proliferation (p-AKT, p-Erk), tight junction formation (Fibronectin, ZO-1, Occludin), and epithelial cell identity (E-cadherin) in HCC cells. Furthermore, cytokine factors were increased, which were associated with immune cell recruitment/activation (MIF-3α), extracellular matrix regulation (TIMP-2), cancer interaction (IL-8, TGF-β2), and angiogenesis regulation (VEGF-A). Compared to CSM, the ASM also showed limited drug penetration in doxorubicin, which appears in tissues in vivo. Thus, the proposed ASM better recapitulated the tumor microenvironment and can provide for more instructive data during in vitro drug screening assays of tumor cells and improved prediction of efficacious drugs in HCC patients.  相似文献   

10.
AB block copolymers composed of hydrophilic poly(ethylene glycol) (PEG) and hydrophobic poly(amino acid) with a carboxyl group at the end of PEG were synthesized with α‐carboxylic sodium‐ω‐amino‐PEG as a macroinitiator for the ring‐opening polymerization of N‐carboxy anhydride. Characterizations by 1H NMR, IR, and gel permeation chromatography were carried out to confirm that the diblock copolymers were formed. In aqueous media this copolymer formed self‐associated polymer micelles that have a carboxyl group on the surface. The carboxyl groups located at the outer shell of the polymeric micelle were expected to combine with ligands to target specific cell populations. The diameter of the polymer micelles was in the range of 30–80 nm. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3527–3536, 2004  相似文献   

11.
High-quality nanocrystals formed in organic solvents can be completely solubilized in water using amphiphilic copolymers containing poly(ethylene glycol) or PEG. These copolymers are generated using a maleic anhydride coupling scheme that permits the coupling of a wide variety of PEG polymers, both unfunctionalized and functionalized, to hydrophobic tails. Thermogravimetric analysis, size exclusion chromatography, cryogenic transmission electron microscopy, and infrared spectroscopy all indicate that the copolymers effectively coat the nanocrystals surfaces. The composite nanocrystal-polymer assemblies can be targeted to recognize cancer cells with Her2 receptor and are biocompatible if their surface coatings contain PEG. In the particular case of semiconductor nanocrystals (e.g., quantum dots), the materials in water have the same optical spectra as well as quantum yield as those formed initially in organic solutions.  相似文献   

12.
A series of poly(D,L-lactic-co-glycolic acid) (PLGA)/poly(ethyleneglycol) (PEG) di-block copolymers were synthesized by ring-opening polymerization of D,L-lactide and glycolide with different molecular weights of monomethoxy polyethyleneglycol (mPEG) 750, 2000 and 5000 as an initiator. The bulk properties of these co-polymers were characterized by using 1H NMR spectroscopy, gel permeation chromatography, differential scanning calorimetry (DSC). Electron spectroscopy for chemical analysis (ESCA) results, in which the blend films with the di-block copolymers showed increasing surface oxygen atomic percentage with increasing PEG chain length, indicate that PEG chain segment in the di-block copolymers is surface oriented and enriched onto the surface of the blend films. The extent of protein adsorption onto the surface of these blend films was studied, using iodine radio-labeled human serum albumin, gamma globulin and human growth hormone. The protein adsorption amount was reduced for the blend films prepared with PLGA/PEG 750 and 2000 di-block copolymers, but increased to a great extent for PLGA/PEG 5000 di-block copolymer. This is due to the increased water uptake capacity of the blend film, which absorbed more protein molecules into a swollen polymer matrix in addition to surface adsorption.  相似文献   

13.
Amphiphilic diblock copolymers composed of poly(ethylene glycol) (PEG) and poly(l-leucine) (PLeu) with mannose at the chain end of PEG were synthesized by a combination of ring-opening polymerization (ROP) and click chemistry. First, an α-azido, ω-amino PEG (N(3)-PEG-NH(2)) was synthesized and converted to the corresponding amine hydrochloride (N(3)-PEG-NH(2)·HCl), which was used as a macroinitiator to initiate the ROP of L-leucine-N-carboxyanhydride (Leu-NCA), yielding three amphiphilic block copolymers with different chain lengths of PLeu (N(3)-PEG-b-PLeu). Then, click chemistry of the alkynyl mannose with N(3)-PEG-b-PLeu anchored a mannose moiety to the PEG chain end of the copolymer. The self-assembly behavior of these copolymers in water was investigated using transmission electron microscopy (TEM), laser light scattering (LLS) and circular dichroism (CD). Depending on the copolymer composition and the initial concentration of the copolymer in organic solvent, different morphologies (e.g. spherical micelle, wormlike micelle) were observed. The aggregation behavior was demonstrated to be controlled by secondary structure formation and the hydrophobic interactions of the PLeu segments. With mannose moieties on the surface of the aggregates, these aggregates could bind reversibly the lectin Concanavalin A (Con A).  相似文献   

14.
A series of novel biodegradable multi-block copolymers PLGA-(L-Asp-alt-diol)(x)-PLGA with pendant amino groups was synthesized by ring-opening polymerization of D,L-lactide/glycolide(D,L-LA/GA) (75/25) using poly(N-Cbz-L-Asp-alt-diol)s as macroinitiator and stannous octoate as catalyst, in which the N-Cbz-L-Asp represents N-carbobenzyloxy-L-aspartic acid and diols are ethylene glycol, triethylene glycol, PEG200, and PEG600, respectively. Their structures and properties were characterized by FTIR, (1)H NMR, DSC, GPC, and elemental analysis (EA). The contents of the L-Asp unit in the copolymers were increased from 12.9 to 79.3 mmol.g(-1) with decreasing the chain length of the diol, while the glass transition temperatures of the copolymers were decreased from 27.1 to 11.7 degrees C with increasing the chain length of the diol. Thus, the results in this study provide a way to prepare biomaterials with different L-Asp unit densities or different number of bioactive sites as well as different properties through adjusting the chain length of the diol. Synthesis of PLGA-(N-Cbz-L-Asp-alt-diol)(x)-PLGA copolymers.  相似文献   

15.
Aqueous suspensions of fumed silica and pyrocarbon/silica (CS) in the presence of dissolved poly(ethylene glycol) (PEG) were studied using (1)H NMR spectroscopy with freezing-out of bulk water and quantum chemical computations of the chemical shifts. The freezing effect for PEG/water is akin to that for low-molecular organics, as formation of solid phases of water (ice) and PEG occurs, and their mixture forms at the eutectic temperature. In the aqueous suspensions of fumed silica or CS, PEG molecules are localized at the solid-liquid interfaces and do not form the bulk solution even at large concentrations; however, the amount of bulk undisturbed water rises due to formation of the immobilized PEG layer. For such suspensions of silica or CS at a low amount of pyrocarbon (C(C)=4 wt%), there is a portion of the graph of the surface free energy (gamma(S)) increasing nearly linearly with the PEG concentration (C(PEG)); however, in the case of large C(C)=40 wt% in CS, a similar effect is not observed, as gamma(S) is maximal at low C(PEG)=0.1 wt%. Copyright 2001 Academic Press.  相似文献   

16.
邹鹏  潘才元 《高分子学报》2007,(10):974-978
以2,2′-(α-溴异丁酰氧基甲基)丙酰氯与Mn分别为4000和2×104的双端羟基聚乙二醇(PEG)进行酯化反应,制得了含4个端溴的PEG大分子引发剂.它在溴化亚铜/2,2′-联吡啶的存在下,在甲醇中,引发甲基丙烯酸3-三甲氧基硅丙酯(TMSPMA)单体进行原子转移自由基聚合(ATRP),得到两个不同分子量的H形嵌段共聚物Sam 1和Sam 2.其结构和分子量及分布用核磁共振氢谱及GPC表征.用TEM研究它们在N,N-二甲基甲酰胺和水混合溶剂中的自组装行为.组成为(EG)91-b-(TMSPMA)92的Sam 1生成复合囊泡;组成为(EG)455-b-(TMSPMA)176的Sam 2形成大的囊泡聚集体.  相似文献   

17.
The drug delivery properties of a series of poly(lactic acid)–poly(ethylene glycol) (PLA–PEG) micellar-like nanoparticles have been assessed in terms of their colloidal stability and their ability to incorporate a water soluble drug. These studies have focused on a range of PLA–PEG copolymers with a fixed PEG block (5 kDa) and a varying PLA segment (3–110 kDa). In aqueous media, these copolymers formed micellar-like assemblies following precipitation from water miscible solvents. There was a controlled increase in the particle size as the molecular weight of the PLA block was increased. The characteristics of the PEG corona were also highly dependent on the PLA moiety. Copolymers with a low molecular weight PLA block (3–15 kDa) formed highly colloidally stable dispersions, with a complete PEG surface coverage. However, increasing the molecular weight of the PLA block resulted in significantly less colloidally stable nanoparticle dispersions, which flocculated in solvents that were significantly better than θ-solvents for the stabilising PEG chains. This can be attributed to a reduced PEG surface coverage and the probable presence of naked PLA ‘patches’ on the particle surface. These larger PLA–PEG nanoparticles (30:5–110:5) were found to be stabilised in the presence of serum components, which are thought to adsorb into the gaps on the particle surface and prevent flocculation. All of the dispersions were found to be stable under physiological conditions and therefore suitable for in vivo administration. A reasonable loading (3.1% w/w) of the micellar-like PLA–PEG 30:5 nanoparticles with the water soluble drug procaine hydrochloride was achieved. The incorporated drug was found to have no effect on the nanoparticle structure or recovery, which can be attributed to the micellar character of these assemblies and the presence of the stabilising PEG chains.  相似文献   

18.
The stereocomplex formation between enantioselective poly(lactide) (PLA) homopolymers is well understood. In this report an attempt is made to analyze the influence on the self‐assembling of the stereocomplex of enantiomorphic PLA‐PEG di‐ and tri‐blocks in different solvents. Powder diffraction studies showed the poly(ethylene glycol) (PEG) and the PLA blocks crystallize separately forming unique supra structures like rods, discs and coiled coils with dimensions in the micrometer scale in length and sub‐micrometer scale in diameter. The influence of the solvents on the crystal formation was shown in the formation of uniform structures. Discs emerged from equimolar mixtures of the D ‐ and L ‐configured di‐ and tri‐block copolymers, in dioxan and acetonitrile and in water the stereocomplexes crystallized mainly as rods. In some cases the rods were observed as coiled coils. The shape, the hydrophobic/hydrophilic content and the PEG coated surface of the discs give them a future potential as matrix for the controlled and targeted delivery of bioactive agents. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
Thermodegradative investigations of two classes of multi-block copolymers containing poly(D,L-lactic-glycolic acid) (PLGA) and either poly(ethylene glycol) (PEG) or poly(ϵ-caprolactone) diol-terminated (PCDT) segments were performed. In particular, the influence of the type and length of the segments as well as of the molar ratio between the D,L-lactic acid (LA) and glycolic acid (GA) residues was investigated at 180°C in air by viscometry, FT-IR analysis and isothermal thermogravimetry. The thermal oxidative degradation of these materials is largely affected by the LA/GA ratio, a higher LA content generally imparting higher stability. The FT-IR analysis suggests that, depending on the composition of the PLGA segments, degradative processes are triggered which can lead to a preferential degradation of the blocks.  相似文献   

20.
Comb-shaped amphiphilic graft copolymers composed of hydrophobic backbones and hydrophilic side chains were prepared by radical copolymerization of poly(ethylene glycol) monomethacrylate macromonomers, and methacrylate and acrylate comonomers in toluene. The copolymerizations were very sensitive to the reaction conditions, and insoluble cross-linked gels were easily formed. The yields of soluble copolymers were affected by the initiator concentration, the macromonomer concentration, and the choice of chain transfer agents and comonomers. Solubilities of the copolymers in water or methanol were found to depend on the sizes and the numbers of the PEG side chains. The copolymers showed surface activity with CMC:s in the order of 0.1–1.5 g/L and surface tensions of 36–56 dyn/cm. When tested as emulsifiers most of the copolymers gave oil-in-water type emulsions at room temperature. Polymers carrying MPEG 2000 side chains were crystalline with melting points of 38–44°C, while those based on PEG 400 and 1000 were mostly amorphous with glass transition temperatures between -55 and -60°C. © 1992 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号