Oxidation of alcohols by direct hydride transfer to the pyrroloquinoline quinone (PQQ) cofactor of quinoprotein alcohol dehydrogenases has been studied using ab initio quantum mechanical methods. Energies and geometries were calculated at the 6-31G(d,p) level of theory. Comparison of the results obtained for PQQ and several derivatives with available structural and spectroscopic data served to judge the feasibility of the calculations. The role of calcium in the enzymatic reaction mechanism has been investigated. Transition state searches have been conducted at the semiempirical and STO-3G(d) level of theory. It is concluded that hydride transfer from the Calpha-position of the substrate alcohol (or aldehyde) directly to the C(5) carbon of PQQ is energetically feasible. Copyright 2001 John Wiley & Sons, Inc. J Comput Chem 22: 1732-1749, 2001 相似文献
In the times of dynamically developing regenerative medicine, more and more attention is focused on the use of natural polymers. This is due to their high biocompatibility and biodegradability without the production of toxic compounds, which means that they do not hurt humans and the natural environment. Chitosan and its derivatives are polymers made most often from the shells of crustaceans and are biodegradable and biocompatible. Some of them have antibacterial or metal-chelating properties. This review article presents the development of biomaterials based on chitosan and its derivatives used in regenerative medicine, such as a dressing or graft of soft tissues or bones. Various examples of preparations based on chitosan and its derivatives in the form of gels, films, and 3D structures and crosslinking products with another polymer are discussed herein. This article summarizes the latest advances in medicine with the use of biomaterials based on chitosan and its derivatives and provides perspectives on future research activities. 相似文献
Combining the selectivity of G-quadruplex (G4) ligands with the spatial and temporal control of photochemistry is an emerging strategy to elucidate the biological relevance of these structures. In this work, we developed six novel V-shaped G4 ligands that can, upon irradiation, form stable covalent adducts with G4 structures via the reactive intermediate, quinone methide (QM). We thoroughly investigated the photochemical properties of the ligands and their ability to generate QMs. Subsequently, we analyzed their specificity for various topologies of G4 and discovered a preferential binding towards the human telomeric sequence. Finally, we tested the ligand ability to act as photochemical alkylating agents, identifying the covalent adducts with G4 structures. This work introduces a novel molecular tool in the chemical biology toolkit for G4s. 相似文献
Collagen films are widely used as adhesives in medicine and cosmetology. However, its properties require modification. In this work, the influence of salicin on the properties of collagen solution and films was studied. Collagen was extracted from silver carp skin. The rheological properties of collagen solutions with and without salicin were characterized by steady shear tests. Thin collagen films were prepared by solvent evaporation. The structure of films was researched using infrared spectroscopy. The surface properties of films were investigated using Atomic Force Microscopy (AFM). Mechanical properties were measured as well. It was found that the addition of salicin modified the roughness of collagen films and their mechanical and rheological properties. The above-mentioned parameters are very important in potential applications of collagen films containing salicin. 相似文献
Tropoelastin is the dominant building block of elastic fibers, which form a major component of the extracellular matrix, providing structural support to tissues and imbuing them with elasticity and resilience. Recently, the atomistic structure of human tropoelastin is described, obtained through accelerated sampling via replica exchange molecular dynamics simulations. Here, principal component analysis is used to consider the ensemble of structures accessible to tropoelastin at body temperature (37 °C) at which tropoelastin naturally self‐assembles into aggregated coacervates. These coacervates are relevant because they are an essential intermediate assembly stage, where tropoelastin molecules are then cross‐linked at lysine residues and integrated into growing elastic fibers. It is found that the ensemble preserves the canonical tropoelastin structure with an extended molecular body flanked by two protruding legs, and identifies variations in specific domain positioning within this global shape. Furthermore, it is found that lysine residues show a large variation in their location on the tropoelastin molecule compared with other residues. It is hypothesized that this perturbation of the lysines increases their accessibility and enhances cross‐linking. Finally, the principal component modes are extracted to describe the range of tropoelastin's conformational fluctuation to validate tropoelastin's scissor‐twist motion that was predicted earlier. 相似文献
Structural proteomics refers to large‐scale mapping of protein structures in order to understand the relationship between protein sequence, structure, and function. Chemical labeling, in combination with mass‐spectrometry (MS) analysis, have emerged as powerful tools to enable a broad range of biological applications in structural proteomics. The key to success is a biocompatible reagent that modifies a protein without affecting its high‐order structure. Fluorine, well‐known to exert profound effects on the physical and chemical properties of reagents, should have an impact on structural proteomics. In this Minireview, we describe several fluorine‐containing reagents that can be applied in structural proteomics. We organize their applications around four MS‐based techniques: a) affinity labeling, b) activity‐based protein profiling (ABPP), c) protein footprinting, and d) protein cross‐linking. Our aim is to provide an overview of the research, development, and application of fluorine‐containing reagents in protein structural studies. 相似文献
A one-pot procedure to difunctionalized fused tricyclic bispyrroloquinone derivatives involving the condensation of N-tosylindoledione and α-ketoamines is described. 相似文献
Protein adsorption is considered to be the most important factor of the interaction between polymeric biomaterials and body fluids or tissues. Water‐mediated hydrophobic and hydration forces as well as electrostatic interactions are believed to be the major factors of protein adsorption. A systematic analysis of various monolayer systems has resulted in general guidelines, the so‐called “Whitesides rules”. These concepts have been successfully applied for designing various protein‐resistant surfaces and are being studied to expand the understanding of protein–material interactions beyond existing limitations. Theories on the mechanisms of protein adsorption are constantly being improved due to the fast‐developing analytical technologies. This Review is aimed at improving these empirical guidelines with regard to present theoretical and analytical advances. Current analytical methods to test mechanistic hypotheses and theories of protein–surface interactions will be discussed. Special focus will be given to state‐of‐the‐art bioinert and biospecific coatings and their applications in biomedicine. 相似文献
Structural mass spectrometry (MS) is gaining increasing importance for deriving valuable three‐dimensional structural information on proteins and protein complexes, and it complements existing techniques, such as NMR spectroscopy and X‐ray crystallography. Structural MS unites different MS‐based techniques, such as hydrogen/deuterium exchange, native MS, ion‐mobility MS, protein footprinting, and chemical cross‐linking/MS, and it allows fundamental questions in structural biology to be addressed. In this Minireview, I will focus on the cross‐linking/MS strategy. This method not only delivers tertiary structural information on proteins, but is also increasingly being used to decipher protein interaction networks, both in vitro and in vivo. Cross‐linking/MS is currently one of the most promising MS‐based approaches to derive structural information on very large and transient protein assemblies and intrinsically disordered proteins. 相似文献
Cell sorting is important for cell biology and regenerative medicine. A visible light‐responsive cell scaffold is produced using gold nanoparticles and collagen gel. Various kinds of cells are cultured on the visible light‐responsive cell scaffold, and the target cells are selectively detached by photoirradiation without any cytotoxicity. This is a new image‐guided cell sorting system.
Polylaminin (polyLM) is a polymerized form of the extracellular matrix protein laminin obtained upon pH acidification. Here microscopy and spectroscopic tools are used to study the cell compatibility and the structural stability of polyLM, aiming at establishing its robustness as a biopolymer for therapeutic use. PolyLM is cell compatible as judged by the efficiency of attachment and neuritogenesis. It is resistant to low temperature. Addition of urea or an increase in hydrostatic pressure leads to polymer disassembly. PolyLM biofilms remain stable for 48 h in contact with cell culture medium. The sedimented polymer recovered after centrifugation and adsorbed on a glass coverslip preserved its original structure and its biological properties.
The outstanding mechanical properties of spider silks have motivated many researchers to establish biotechnological production techniques which are necessary to provide sufficient amounts of silk proteins for industrial applications. Based on recent developments in genetic engineering, two strategies for the recombinant production of spider-silk proteins have been established which are discussed in detail. Further, protein-design strategies are described, enabling the combination of silk properties with additional biological, chemical, or technical features. We highlight the potential of engineered and recombinantly-produced spider-silk proteins to provide the basis for a new generation of biomaterials. 相似文献
Functional materials composed of proteins have attracted much interest owing to the inherent and diverse functionality of proteins. However, establishing general techniques for assembling proteins into nanomaterials is challenging owing to the complex physicochemical nature and potential denaturation of proteins. Here, a simple, versatile strategy is introduced to fabricate functional protein assemblies through the interfacial assembly of proteins and polyphenols (e.g., tannic acid) on various substrates (organic, inorganic, and biological). The dominant interactions (hydrogen‐bonding, hydrophobic, and ionic) between the proteins and tannic acid were elucidated; most proteins undergo multiple noncovalent stabilizing interactions with polyphenols, which can be used to engineer responsiveness into the assemblies. The proteins retain their structure and function within the assemblies, thereby enabling their use in various applications (e.g., catalysis, fluorescence imaging, and cell targeting). 相似文献