首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
According to ab initio molecular orbital calculations carried out with full geometry optimization at the MP2/6–31G** level, the classical 2-fluoroethyl cation, FCH2CH2+, is a transition structure for H-scrambling in CH3CHF+. Single point MP4/6–31G** calculations at the optimized geometries predict the cyclic ethylene fluoronium ion to lie 24.2 kcal mol−1 above CH3CHF+ and 5.4 kcal mol−1 below the 2-fluoroethyl cation. ΔG‡ for ring opening of the cyclic fluoronium ion at -60° is estimated to be ca 15 kcal mol−1. This barrier is largely attributable to the powerful negative fluorine hyperconjugation in the transition state as described by Hoffmann and coworkers. When electron correlation effects are ignored a qualitatively different potential surface is obtained on which the 2-fluoroethyl cation is calculated to be a local minimum separated from the stable 1-fluoroethyl cation by an H-bridged transition state.  相似文献   

2.
Theoretical calculations were performed to elucidate the ability of the recently reported bis‐tert‐alcohol‐functionalized crown‐6‐calix[4]arene (BACCA) molecule to promote nucleophilic fluorination of alkyl mesylates with cesium fluoride reagent. It was found that a similar structure, named BACCAt, can separate the cesium fluoride ion pair in tert‐butanol solution. This separation has a free energy cost, even considering the double hydrogen bonds with the fluoride ion. The solvent has an important effect on the stabilization of this complex, due to interaction with the high dipole moment of the separated ion pair. The observed rate acceleration effect involves a structure with double hydrogen bonds between the BACCAt and the centers of negative charges of the SN2 transition state. The predicted free energy barrier of 27.3 kcal mol−1 is in excellent agreement with the estimated experimental value of 26.2 kcal mol−1.  相似文献   

3.
Interpretation of the results of determinations of free fluoride (Ff) and total fluoride (Ft) obtained with fluoride ISE while conducting elemental chemical analysis of bulk material of newly synthesized inorganic fluoride compounds is of crucial importance for the purpose of determination of purity and stoichiometry of these compounds. Knowledge of the properties and behavior of these compounds in aqueous media is therefore essential. Observations are presented on the determinations of the amounts of Ft and Ff in fluorinated compounds, in the particular hexafluoropnictate salts (PnF6, Pn = P, As, Sb, Bi) as found in aqueous media and in some compounds with XeF2, AsF3 ligands. A critical look at the determined amounts of Ff, Ftand calculated amounts of bound fluoride (Fb) is provided.  相似文献   

4.
L‐Cysteine hydrogen fluoride, or bis(L‐cysteinium) difluoride–L‐cysteine–hydrogen fluoride (1/1/1), 2C3H8NO2S+·2F·C3H7NO2S·HF or L‐Cys+(L‐Cys...L‐Cys+)F(F...H—F), provides the first example of a structure with cations of the `triglycine sulfate' type, i.e.A+(A...A+) (where A and A+ are the zwitterionic and cationic states of an amino acid, respectively), without a doubly charged counter‐ion. The salt crystallizes in the monoclinic system with the space group P21. The dimeric (L‐Cys...L‐Cys+) cation and the dimeric (F...H—F) anion are formed via strong O—H...O or F—H...F hydrogen bonds, respectively, with very short O...O [2.4438 (19) Å] and F...F distances [2.2676 (17) Å]. The F...F distance is significantly shorter than in solid hydrogen fluoride. Additionally, there is another very short hydrogen bond, of O—H...F type, formed by a L‐cysteinium cation and a fluoride ion. The corresponding O...F distance of 2.3412 (19) Å seems to be the shortest among O—H...F and F—H...O hydrogen bonds known to date. The single‐crystal X‐ray diffraction study was complemented by IR spectroscopy. Of special interest was the spectral region of vibrations related to the above‐mentioned hydrogen bonds.  相似文献   

5.
A conformational study on the lowest triplet states of formaldehyde, acetaldehyde, propionaldehyde and acetone has been done using a minimal basis set, within the unrestricted Hartree—Fock framework.For the C3H6O species, the energy hypersurfaces (E θ1, θ2, θ3) were generated, where energy is a function of the methyl rotations (θ1, θ2) and C---O out-of-plane bending for acetone, and a function of methyl rotation (θ1), C2H5---C rotation (θ2) and CHO out-of-plane deformation (θ3) for propionaldehyde.The analysis of the hypersurface equations revealed the location and relative energies of the critical points (minima, first and second order saddle points as well as maxima): the barriers to inversion at the carbonyl group were 2.7 kcal mol−1 for acetone and 4.2 kcal mol−1 for propionaldehyde. Partial geometry optimization reduced these barriers to 2.5 and 2.4 kcal mol−1 respectively.For comparison, both the pyramidal minimum and planar saddle point for the inversion of triplet formaldehyde and acetaldehyde were totally optimized; the resultant barriers were 2.0 kcal mol−1 and 2.3 kcal mol−1, respectively. The barrier to rotation about the bond to the α-carbon was 1.1 kcal mol−1 for pyramidal acetone, 1.0 for acetaldehyde and ranged from 0.8 to 1.8 kcal mol−1 for the various propionaldehyde conformers.  相似文献   

6.
The electronic structure and stability of pyrrolyl are investigated using CASSCF, CASPT2 and G2(MP2) techniques. The ground state of pyrrolyl is found to be 2A2, with five π-electrons, as in cyclopentadienyl. The computed N–H bond energy of pyrrole is 94.8 kcal mol−1, while the heat of formation ΔfH298o of pyrrolyl is deduced to be 70.5±1 kcal mol−1. The Arrhenius parameters of N–H and C–H bond fission in pyrrole and cyclopentadiene and hydrogen abstraction reactions (by hydrogen) were also computed, indicating that pyrrolyl forms predominantly by C–H bond fission of pyrrolenine rather than by direct N–H bond fission.  相似文献   

7.
5-Aminotetrazole trinitrophloroglucinolate ((ATZ)TNPG) was prepared and characterized by elemental analysis and FT-IR spectroscopy. The crystal structure was determined by X-ray diffraction analysis and it belonged to orthorhombic system and Pbca space group with a=0.6624(2) nm, b=1.7933(4) nm, c=2.3117(5) nm, V=2.7458(9) nm3, Z=4, and Dc=1.849 g·cm−3. The molecular formula was confirmed to be (ATZ)TNPG·2H2O. 5-Aminotetrazole cation (ATZ+) and trinitrophloroglucinol anion (TNPG) were linked into 2-D layers along b-axis and c-axis by hydrogen bonds. Then the layers were linked along a-axis by hydrogen bonds between the water molecules belonging to different layers. The thermal decomposition mechanism of the compound was studied by differential scanning calorimetry (DSC), thermogravimetry-thermogravimetric analysis (TG-DTG), and Fourier transform-infrared (FT-IR) spectroscopy techniques. Under nitrogen atmosphere with a heating rate of 10 °C·min−1, the compound experienced one endothermic process with peak temperature of 76 °C and one exothermal process with peak temperature of 203 °C. The former was confirmed to be a dehydrate process. The latter was the decomposition of TNPG and ATZ+ in the compound. The exothermic enthalpy change of this process was −212.10 kJ·mol−1. The kinetic parameter calculation from Kissinger's method were, E=132.1 kJ·mol−1, ln(A/s−1)=12.54 with r=0.9990, and the calculation results from Ozawa-Doyle's method were, E=133.1 kJ·mol−1 with r=0.9992.  相似文献   

8.
The energy of formation of an open-chain N-methyltrifluoromethanesulfonamide dimer stabilized by the N-H⋯O=S hydrogen bond is 20.1 kJ mol−1 (CH2Cl2). This value exceeds by ∼12 kJ mol−1 the energy of formation of cyclic secondary methanesulfonamide self-associates per hydrogen bond.__________Translated from Zhurnal Obshchei Khimii, Vol. 75, No. 2, 2005, pp. 295–298.Original Russian Text Copyright © 2005 by Chipanina, Sherstyannikova, Sterkhova, Turchaninov, Shainyan.  相似文献   

9.
Ab initio MP2 and density functional B3LYP calculations were performed to investigate the interaction of a proton with the O, F and Cl atoms of enflurane (CHFCl–CF2–O–CHF2) in the gas phase. The study included the optimized structures, proton affinities, interactions energies and thermodynamic properties of protonated enflurane. The proton affinities (PAs) of the O and Cl atoms are 154.5 and 139.8 kcal mol−1, respectively, whereas PAs of five of the fluorine atoms are between 143.6 and 165.5 kcal mol−1 (MP2 results). In contrast to protonation at the O and Cl atoms, protonation at each of the F atoms of enflurane reveals a striking result, it leads to a cleavage of the C–F bond and formation of an ion–dipole complex between the enfluranyl cation and neutral hydrogen fluoride. The [(enfluranyl)+FH] complexes are weakly bound, the SAPT-calculated interaction energy varies between −12.5 and −11.7 kcal mol−1. The long range attraction in these complexes is dominated by the electrostatic term (70%), whereas the induction and dispersion components contribute by about 15% each. Protonation at the chlorine atom of enflurane does not lead to a cleavage of the C–Cl bond. For the O-protonated enflurane the results from the natural bond orbital analysis (NBO) are discussed in details.  相似文献   

10.
A highly selective and sensitive method of fluorometry is described for determination of the fluoride ion at the parts per billion level via the ion-pair complex formation of the fluoride ion with an expanded prophyrin [2,23-diethyl-8,17-bis(2-ethoxycarbonylethyl)-3,7,12,13,18,22-hexamethylsapphyrin (H3sap)]. The ion-pair complex gives out an enhanced fluorescence intensity at 680 nm on excitation at 450 nm. Since the present method is based on a direct reaction of the fluoride ion with the sappyrin, a 200-fold amount of the aluminum (III) ion [10−4M (M = mol dm−3)] and a 2000-fold amount of the iron(III) ion (10−3M) over the fluoride ion did not interfere with determination of the fluoride ion at concentrations as low as 5 × 10−7M in the presence of 1,2-diaminocyclohexane-N,N,N′,N′-teraacetic acid. The proposed method was applied to determination of the fluoride ion in various water samples (tap water, river water, rain water, underground water, and hot spring water) and satisfactory results were obtained.  相似文献   

11.
MP2 and DFT calculations with correlation consistent basis sets indicate that isolated linear anionic dialkylgold(I) complexes form moderately strong (ca. 10 kcal mol?1) Au???H hydrogen bonds with single H2O molecules as donors in the absence of sterically demanding substituents. Relativistic effects are critically important in the attraction. Such bonds are significantly weaker in neutral, strong σ‐donor N‐heterocyclic carbene (NHC) complexes (ca. 5 kcal mol?1). The overall association (>11 kcal mol?1), however, is strengthened by co‐operative, synergistic classical hydrogen bonding when the NHC ligands bear NH units. Further manipulation of the interaction by ligands positioned trans to the carbene, is possible.  相似文献   

12.
Ab initio MP2/6-31G*//HF/6-31G*+ZPE(HF/6-31G*) calculations of the potential energy surface in the vicinity of stationary points and the pathways of intramolecular rearrangements between low-lying structures of the OBe3F3 + cation detected in the mass spectra of μ4-Be4O(CF3COO)6 were carried out. Ten stable isomers with di- and tricoordinate oxygen atoms were localized. The relative energies of six structures lie in the range 0–8 kcal mol−1 and those of the remaining four structures lie in the range 20–40 kcal mol−1. Two most favorable isomers, aC 2v isomer with a dicoordinate oxygen atom, planar six-membered cycle, and one terminal fluorine atom and a pyramidalC 3v isomer with a tricoordinate oxygen atom and three bridging fluorine atoms, are almost degenerate in energy. The barriers to rearrangements with the breaking of one fluorine bridge are no higher than 4 kcal mol−1, except for the pyramidalC 3v isomer (∼16 kcal mol−1). On the contrary, rearrangements with the breaking of the O−Be bond occur with overcoming of a high energy barrier (∼24 kcal mol−1). A planarD 3h isomer with a tricoordinate oxygen atom and linear O−Be−H fragments was found to be the most favorable for the OBe3H3 + cation, a hydride analog of the OBe3F3 + ion; the energies of the remaining five isomers are more than 25 kcal mol−1 higher. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 420–430, March, 1999.  相似文献   

13.
A bis‐tert‐alcohol‐functionalized crown‐6‐calix[4]arene (BACCA) was designed and prepared as a multifunctional organic promoter for nucleophilic fluorinations with CsF. By formation of a CsF/BACCA complex, BACCA could release a significantly active and selective fluoride source for SN2 fluorination reactions. The origin of the promoting effects of BACCA was studied by quantum chemical methods. The role of BACCA was revealed to be separation of the metal fluoride to a large distance (>8 Å), thereby producing an essentially “free” F?. The synergistic actions of the crown‐6‐calix[4]arene subunit (whose O atoms coordinate the counter‐cation Cs+) and the terminal tert‐alcohol OH groups (forming controlled hydrogen bonds with F?) of BACCA led to tremendous efficiency in SN2 fluorination of base‐sensitive substrates.  相似文献   

14.
An amorphous Mo–Os–Se carbonyl cluster compound has been synthesized in 1,2-dichlorobenzene (b.p.≈180°C) to be tested as an electrocatalyst for molecular oxygen reduction in 0.5 M H2SO4. Scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM) performed for the powder supported on pyrolytic carbon show a distribution of nanometer-scale amorphous particles with agglomerations in cluster forms. The catalytic activity was studied by the rotating disc electrode technique. Kinetic studies show a first-order reaction with a Tafel slope of −0.118 V dec−1 and dα/dT=1.55×10−3 K−1. In the temperature range 298–343 K, an activation energy of 32 kJ mol−1 was determined.  相似文献   

15.
The kinetics of the interaction of thiosemicarbazide with cis-[Ru(bipy)2(H2O)2]2+ (bipy = α α′-bipyridyl) have been studied spectrophotometrically as a function of [Ru(bipy)2(H2O)22+], [bipyridyl] and temperature, at a particular pH (4.8), where the substrate complex exists predominantly as the diaqua species and thiosemicarbazide as the neutral ligand. The reaction proceeds via an outer sphere association complex formation, followed by two slow consecutive steps. The first is the conversion of the aforementioned complex into the inner sphere complex, and the second step involves the entrance of another thiosemicarbazide molecule in the coordination zone of Ru(II) whereby, in each step, an aqua ligand is replaced. The association equilibrium constant (KE) for the outer sphere complex formation has been evaluated together with rate constants for the two subsequent steps. Activation parameters have been calculated for both steps using the Eyring equation (ΔH1# = 25.37±1.6 kJ mol−1, ΔS1# = −215.48 ± 4.5 J K−1 mol−1, ΔH2# = 24.24 ± 1.1 kJ mol−1, ΔS2# = −207.14 ± 3.0 J K−1 mol−1). The low enthalpy of activation and large negative value of entropy of activation indicate an associative mode of activation for both aqua ligand substitution processes. From the temperature dependence of KE, the thermodynamic parameters calculated are: ΔH0 = 10.75±0.54 kJ mol−1 and ΔS0 = 84.67 ± 1.75 J K−1 mol−1, which give a negative ΔG0 value at all temperatures studied, supporting the spontaneous formation of an outersphere association complex prior to the first step.  相似文献   

16.
The interaction of molecular hydrogen with [Rh(PPh3)3]+ (1a) “immobilized” in the interlamellar spaces of montmorillonite resulted in the formation of a monohydrido complex, [RhIIH(PPh3)3] (2a), characterized by electrochemical data of the clay-loaded electrode, IR, EPR and hydrogen absorption studies. Heterogenized homogeneous catalytic hydrogenation of cyclohexene catalysed by 1a was investigated in the temperature range 283–313 K. The order of reaction with respect to cyclohexene and hydrogen concentration is fractional and first order with respect to catalyst concentration. Thermodynamic parameters ΔH0 and ΔS0 corresponding to the formation of the monohydrido species were found to be 18 kcal mol−1 and 61 e.u., respectively. The activation enthalpy, ΔH, and entropy, ΔS, for the hydrogenation of cyclohexene by the RhII—H complex in clay are more negative by about 2 kcal mol−1 and 7 e.u. compared to Wilkinson's catalyst, RhCl(PPh3)3 (1), in homogeneous solution.  相似文献   

17.
The geometries, electronic structures, and hyperfine coupling constants of azafullerene C59N (a π-electron radical) and its derivatives, C59NH and endofullerene H@C59N, were calculated at the B3LYP level of the density functional theory. Analysis of calculated potential energy profiles along trajectories of the motion of encapsulated hydrogen atom from the center of the fullerene sphere toward different atoms of C59N revealed formation of a chemical bond between the H atom and a carbon atom that is involved in the 6,6-bond with the N atom and bears the most part of the π-electron spin density. The C—H endo-bond length is 1.12 Å, the bond dissociation energy being equal to 26.4 kcal mol−1. The C—H exo-bond involving the same carbon atom is 0.02 Å shorter than the endo-bond, the bond dissociation energy being much higher (78.4 kcal mol−1).__________Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 51–54, January, 2005.  相似文献   

18.
Ab initio calculations at second-order Møller-Plesset perturbation theory with the 6-31 + G(d,p) basis set have been performed to determine the equilibrium structures and energies of a series of negative-ion hydrogen-bonded complexes with H2O, H2S, HCN, and HCl as proton donors and OH, SH, CN, and Cl as proton acceptors. The computed stabilization enthalpies of these complexes are in agreement to within the experimental error of 1 kcal mol–1 with the gas-phase hydrogen bond enthalpies, except for HOHOH, in which case the difference is 1.8 kcal mol–1. The structures of these complexes exhibit linear hydrogen bonds and directed lone pairs of electrons except for complexes with H2O as the proton donor, in which cases the hydrogen bonds deviate slightly from linearity. All of the complexes have equilibrium structures in which the hydrogen-bonded proton is nonsymmetrically bound, although the symmetric structures of HOHOH and ClHCl are only slightly less bound than the equilibrium structures. MP2/6-31 + G(d,p) hydrogen bond energies calculated at optimized MP2/B-31 + G(d,p) and at optimized HF/6-31G(d) geometries are similar. Using HF/6-31G(d) frequencies to evaluate zero-point and thermal vibrational energies does not introduce significant error into the computed hydrogen bond enthalpies of these complexes provided that the hydrogen-bonded proton is definitely nonsymmetrically bound at both Hartree-Fock and MP2.  相似文献   

19.
The unimolecular rearrangements of hydrogen, methyl and phenyl groups at the Si atom in α-silylcarbenium ions have been investigated using an ab initio molecular orbital method. MP2/6–31 + G*//HF/6–31G* calculations predict that all three groups migrate from the Si to an adjacent Cα with no energy barrier. Thus, the silicenium ion is the only stable species in each potential energy surface. The conformation of the benzylsilicenium ion, (C6H5)CH2−SiH2+, indicates that the phenyl ring is significantly bent toward the silyl cationic center in order to interact with the vacant 3p(Si+) orbital. In contrast to MP2 results, Hartree-Fuck calculations (both HF/3–21G* and HF/6–31G* levels) predict small energy barriers for 1,2-migrations of H and Me (1.4 kcal mol−1 for H migration, and 1.5 kcal mol−1 for Me migration, respectively, at the HF/6–31G* level). This difference provides convincing evidence that the incorporation of electron correlation is of particular importance in describing the potential energy surface for the rearrangement of α-silylcarbenium ions to silicenium ions. The results of the calculations have also been applied to the possible rearrangement mechanism of α-chlorosilanes to chlorosilanes, assuming that the experimental conditions are favorable toward the generation of ionic species. Various factors which may govern the migratory aptitudes of various R groups, i.e. (1) activation energies, (2) overall reaction energies and (3) the conformational preference of reactants have been investigated. The calculated activation energy obtained, namely the energy for the generation of the silicenium ion and the C−1 ion from an α-chlorosilane, is consistent with the experimental migratory aptitude in the gas phase observed in mass spectrometers.  相似文献   

20.
A small amount (≤ 10−6 mol fraction) of four alkaline earth metals, tin and yttrium were introduced into five, premixed, fuel-rich, H2–O2–N2 flames at atmospheric pressure in the temperature range 1820–2400 K. Aqueous salt solutions of the metals were sprayed into the premixed flame gas as an aerosol using an atomizer technique. Ions in a flame were observed by sampling flame gas through a nozzle into a mass spectrometer. The concentrations of the major neutral metallic species present in the flame were calculated from thermodynamic data currently available. The principal metallic ions observed were AOH+ (A = Mg, Ca, Sr, Ba, Sn) and A(OH)2+ (A = Y), formed initially by proton transfer to AO and OAOH from H3O+, a natural flame ion. Except for Mg, the ions were also produced by chemi-ionization processes. By adjusting the concentration(s) of the salt solution in the atomizer, it was found that a pair of ions could be brought into equilibrium within the time scale of the flame; the pairs included H3O+ with a metal ion or two metallic ions. Because water is a major product of combustion, a very large difference in proton affinity PA0(AO) − PA0(H2O) ≤ 490 kJ mol−1 (117 kcal mol−1) could be attempted for the proton transfer equilibrium. Using PA0(H2O) = 691.0 kJ mol−1 (165.2 kcal mol−1) as a reference base to anchor the proton affinity scale, ion ratio measurements led to proton affinity PA0 values of 766, 912, 1004, 1184, 1201, and 1222 kJ mol−1 (183, 218, 240, 283, 287, and 292 kcal mol−1) corrected to 298 K for OYOH, SnO, MgO, CaO, SrO, and BaO, respectively; of these, only the value for OYOH has not been reported previously. If it is assumed that the neutral thermodynamic data are correct (although some appear to be in error), the uncertainties in the PA results reported here are ± 21 kJ mol−1 (5 kcal mol−1). The realization that these equilibria can be achieved in flames provides a new approach to consolidate and build the high end of the proton affinity ladder, primarily of metallic species which are not accessible at lower temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号