首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
 The transport behavior of bile salts (BSs) solubilizing cholesterol (Ch) or none across an artificial membrane was investigated for sodium salts of deoxycholic acid (NaDC), chenodeoxycholic acid (NaCDC), ursodeoxycholic acid (NaUDC) and cholic acid (NaC) in tetraborate–carbonate buffer solution at pH 10.0 and 37 °C. The study demonstrated that the surfactant properties such as critical micellization concentration (CMC) and micellar size or diffusion coefficient were determinable from the flux or permeability measurements. The comparison among the respective pure systems of BSs led to a conclusion that the micellar size was in the order of NaDC>NaCDC>NaUDC>NaC and determined CMC values were in agreement with those in literature. The magnitude of solubilizing power (capacity) of BS for Ch was found to decrease in the order of NaDC>NaCDC>NaC>NaUDC; this order is in accordance with that of the empirical hydrophobicity index. The hydrodynamic radii for the singly dispersed species and the micellar species of the respective BSs and of Ch-solubilizing micelles were estimated from the permeability data; the radii of the Ch-solubilizing micelles are approximately 12–15 Å and interestingly, smaller than those of the respective BS alone micelles ranging from 14 to 22 Å. Received: 15 April 1997 Accepted: 25 July 1997  相似文献   

2.
The interior structure of micelles formed by bile salts, which differ in the number and location of the hydroxyl groups attached to the steroid nucleus, was studied by the spin label and fluorescence label methods. The results show that the interior structure of micelles formed by bile salts possessing two hydroxyl groups is more rigid than that of micelles formed by trihydroxy bile salts regardless of the terminal hydrophilic group. Even in the case of dihydroxy bile salts possessing two hydroxyl groups in the same location, the interior structures of their micelles are different from each other depending on the orientation of their hydroxyl groups. It is considered that hydroxyl groups as well as the terminal hydrophilic group play an important role in the micellar formation of bile salts.  相似文献   

3.
Transport limitations in ion exchange membranes at low salt concentrations   总被引:2,自引:0,他引:2  
In this work we show that the electrical resistance of ion exchange membranes strongly depends on the solution concentration: especially at low solution concentrations (<0.1 M NaCl) we observe a very strong increase in electrical resistance of the membrane with decreasing concentration. To understand and clarify this behavior we systematically investigate the influence of the solution concentration on ion transport phenomena in two anion exchange membranes (Neosepta AMX and Fumasep FAD) and two cation exchange membranes (Neosepta CMX and Fumasep FKD) in the concentration range from 0.017 M to 0.5 M NaCl and for different hydrodynamic conditions. The results are highly valuable for processes that operate in the low concentration range (<0.5 M) such as reverse electrodialysis, electrodialysis, microbial fuel cells and capacitive deionization, where the standard membrane characterization values as usually determined in 0.5 M NaCl solutions do not represent the practical application.  相似文献   

4.
Membrane separation technology plays a pivotal role in modern industry and scientific research. The key to developing and improving membrane separation processes lies in designing and fabricating customized porous membranes with specific physical parameters, including pore diameter, porosity, pore size distribution, pore length (membrane thickness), pore geometry, and pore connectivity. Polymeric porous membranes with vertically-penetrative-pores (PPMVs) represent a distinct category among the available membranes due to their unique characteristics such as short transport path, small trans-membrane resistance, and simple pore geometry, as compared to other porous membranes with sponge-like channels. In practical applications, PPMVs offer several advantages, including achieving higher flux rates, facilitating easier unidirectional transport, and enabling harmless biological extraction. Moreover, PPMVs can serve as ideal model systems for theoretical investigations on the fundamental mechanisms of separation and transport in academic research. With substantial advancements in fabrication technologies and application fields of PPMVs in recent years, it warrants a comprehensive perspective. In this mini-review, we provide an overview of widely used fabrication methods for PPMVs, discuss their primary applications, and address the existing challenges and opportunities.  相似文献   

5.
Solubilization of cholesterol by mixed micelles of sodium chenodeoxycholate with sodium ursodeoxycholate was investigated in carbonate-tetraborate buffer (Kolthoff) solution at pH 10 and 37°C. It was found that the mixing of the two bile salts gives a negatively synergetic effect on solubilization of cholesterol. The solubilizing power of bile salts for cholesterol was remarkably influenced with the change in mole fraction of sodium ursodeoxycholate (X UDC).The behavior of bile salt solutions saturated with cholesterol was examined by measuring the surface tension. Two break points were observed in the curves of surface tension vs. concentration. The break points seem to correspond to a CMC in the absence of solubilized cholesterol and another CMC in the presence of solubilized cholesterol inside bile salt micelle.  相似文献   

6.
Various types of signal‐responsive polymers were grafted on surfaces of porous membranes as polymer brushes. The grafted polymers shrank and extended in response to environmental signals, such as pH, ionic strength, temperature, redox reaction and photo‐irradiation. The pore size was regulated by the extent of the polymer brush. The phenomenon was observed in situ by atomic force microscopy. As a result, the substance permeation through the porous membrane was controlled in response to the signals. The permeation control was rapid in comparison with hygrogel‐type membranes, and was reversibly performed. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

7.
Diffusion of vitamin K1 solubilized by phosphatidylcholine-sodium deoxycholate mixed micelles through porous membranes having various pore characteristics was examined. The membranes include Nuclepore, Duragard and nitrocellulose membranes, which were intended to mimic the narrow channels in the vicinity of absorptive brush border. The diffusion coefficient of the mixed micelles was 4.6-5.5 x 10(-7) cm2/s, from which the hydrodynamic radius was calculated to be about 50 A. The dependence of the diffusivity on pore size showed that the transport of the micelles is hindered by pores having a radius ratio of the diffusate to the pore of about 0.05 or larger.  相似文献   

8.
The optical effects of the adsorption of eosin on the colloidal silver particle have been investigated in aqueous solutions. It was found that upon adsorption the fluorescence of eosin was effectively quenched. This was explained as the photoinduced interfacial electron transfer from the excited singlet state of eosin to the silver particle. Decreasing pH of the solution favors the adsorption of eosin and so enhances the fluorescence quenching. For comparison, the fluorescence quenching in reverse micelles was also investigated. The quenching behavior was much different from that mediated in aqueous solution. This was attributed to the unique microenvironment of reverse micelles.  相似文献   

9.
Silva RA  Wang CC  Fernández LP  Masi AN 《Talanta》2008,77(1):166-171
We propose a novel evanescent wave scattering imaging method using an objective-type total internal reflection system to image and track single gold nanoparticles (GNPs) in solution. In this imaging system, only a millimeter-scale hole is employed to efficiently separate GNPs scattering light from the background reflected beam. The detailed experimental realization of the imaging system was discussed, and the effect of the hole size on imaging was investigated. We observed that the hole diameters from 2.5 to 4 mm are suitable to perform the scattering imaging by adjusting the incidence angle. The technology was successfully applied to track single gold nanoparticles in solution and on live cell membrane via the anti-epidermal growth factor receptor antibody. Compared to total internal fluorescence microscopy, the resonance light scattering detection has no photobleaching or blinking inherent to fluorescent dyes and quantum dots. Compared to conventional dark-field microscopy, the evanescent wave illumination can be conveniently applied to study membrane dynamics in living cells. Additionally, the objective-based configuration provides a free space above the coverslip, and allows imaging and concomitant manipulation of live cells in culture by microinjection, patch-clamping, AFM and other techniques.  相似文献   

10.
Piroxicam was found to be a highly selective carrier for uphill transport of Cu2+ ions through a chloroform liquid membrane. The transport occurs via a counterflow of protons from the receiving phase to the source phase. The effects of several parameters on the transport of Cu2+ ions, such as the carrier concentration, pH of the source phase, composition of the receiving phase, and duration are described. A high transport efficiency (98±2%) was provided by the carrier for Cu2+ ions in a receiving phase of 0.01 mol l−1 sulfuric acid after 4 h. Different metal ion transport experiments showed that Cu2+ ions were selectively transported over other ions, such as Co2+, Ni2+, Cd2+, Pb2+, Zn2+, UO22+ and ZrO22+. In the presence of fluoride ions (used as a suitable masking agent in the source phase), the interfering effects of UO22+ and ZrO22+ ions were eliminated. The applicability of the method was tested on a real sample, and the results obtained show that it is potentially useful for solvent extraction of copper.  相似文献   

11.
We report proton chemical shifts for two model chiral analytes that are commonly used in the study of micellar electrokinetic capillary chromatography (MEKC), R,S-1,1'-binaphthol (1, BN) and R,S-1,1'-binaphthyl-2,2'-diyl hydrogen phosphate (2, BNDHP), in the absence and presence of monomers and micelles of sodium cholate and sodium deoxycholate. The analytes undergo fast exchange in and out of the micelles, which perturbs the analytes' chemical shifts, and which we use to resolve some resonances that are degenerate at both 300 and 600 MHz. Although BN and BNDHP are simple molecules, the proton assignments are only unambiguously established with the aid of the exchange with micelles, an attractive alternative to other methodologies such as the use of paramagnetic shift reagents which may also cause spectral distortions. We rely also upon 2D-NOE spectra of samples in the presence of micelles to perform these assignments. Recently published assignments, which were based upon 2D-COSY spectroscopy, appear to be in error and are corrected here. Finally, we note that these shifts are information-rich reporters on the nature of the interactions of these model analytes with the micelles.  相似文献   

12.
We have recently proposed a new method for generating uniformly sized microbubbles from Shirasu porous glass (SPG) membranes with a narrow pore size distribution. In this study, to obtain a high gas permeation rate through SPG membranes in microbubble formation process, asymmetric SPG membranes were used. At the transmembrane/bubble point pressure ratio of less than 1.50, uniformly sized microbubbles with a bubble/pore diameter ratio of approximately 9 were generated from an asymmetric SPG membrane with a mean pore diameter of 1.58 μm and a skin-layer thickness of 12 ± 2 μm at a gaseous-phase flux of 2.1–24.6 m3 m−2 h−1, which was much higher than that through a symmetric SPG membrane with the same pore diameter. This is mainly due to the much smaller membrane resistance of the asymmetric SPG membrane. Only 0.27–0.43% of the pores of the asymmetric SPG membrane was active under the same conditions. The proportion of active pores increased with a decrease in the thickness of skin layer. In contrast to the microbubble formation from asymmetric SPG membranes, polydispersed larger bubbles were generated from asymmetric porous ceramic membranes used in this study, due to the surface defects on the skin layer. The surface defects were observed by the scanning electron microscopy and detected by the bubble point method.  相似文献   

13.
The micelle formation process for a typical anionic surfactant, sodium dodecyl sulfate, and a typical cationic surfactant, dodecyltrimethylammonium bromide, has been investigated in a series of mixed solvents consisting of different concentrations of isomeric hexanediols (1,2-hexanediol and 1,6-hexanediol) in water. The critical micelle concentrations and the degrees of counterion dissociation of the mixed micelles were obtained from conductance experiments. Luminescence probing experiments have been used to determine the concentration of micelles in solution and, hence, the micellar aggregation numbers of the surfactants in the mixed solvent systems. The alcohol aggregation numbers were determined by combining the partition coefficients (obtained using NMR paramagnetic relaxation enhancement experiments) with the micellar concentrations from the luminescence probing experiments. All these results are interpreted in terms of the difference in the interaction of the isomeric hexanediols with the surfactant as a function of the position of the hydroxyl groups on the six-carbon chain of the alcohol. Received: 28 June 2000/Accepted: 5 July 2000  相似文献   

14.
The time lag permeation technique has proven to bean effective method for characterisation. Because of the simple nature of the permeation experiment, transport parameters can be directly obtained from experimental data hence avoiding the intensive mathematical treatment required by other techniques. The method has historically been applied to diffusion and adsorption in porous membranes and diffusion in polymer membranes. Since its origins in 1920, interest in the time lag method has expanded because of its value in characterising simple permeation processes and also complex systems of diffusion with simultaneous adsorption and surface diffusion. This review focuses on presenting the asymptotic solution of the mass balance diffusion equations and includes applications of time lag analysis, in order to give a critical and broad perspective of this method as a tool for characterisation. It includes much of the previously published literature in order to show that for most cases the asymptotic solution of the transport equations is simple, and for more complex cases that an analytical solution is possible hence avoiding cumbersome numerical techniques.  相似文献   

15.
16.
Critical micelle concentrations (CMC) of sodium salts of cholic, deoxycholic and chenodeoxycholic acids in phosphate buffer (pH 7.92) have been determined from microcalorimetric titration curves. The obtained values of 18.4±0.6, 5.3±0.2 and 7.0±0.2 mM, respectively, for Na cholate, Na deoxycholate and Na chenodeoxycholate are close to literature values obtained by other methods. CMC values for secondary micelles were also obtained. This microcalorimetric titration method gives highly reproducible results and rapid determination of CMC values of bile acid salts.  相似文献   

17.
When polymer–silver salt complex membranes were exposed to UV irradiation, the separation performances of both the permeance and selectivity for propylene–propane decreased, which was primarily attributed to the reduction of the silver ions in the membranes to silver nanoparticles. Here, the effect of the polymer matrix on the formation of silver nanoparticles in the polymer–silver salt complex membranes was investigated. This effect was assessed for the complexes of two kinds of silver salts (AgBF4 and AgCF3SO3) with several polymeric ligands containing three different carbonyl groups, including poly(vinyl pyrrolidone) (PVP) with an amide group, poly(vinyl methyl ketone) (PVMK) with a ketone group, and poly(methyl methacrylate) (PMMA) with an ester group. UV–vis spectra and transmission electron microscopy (TEM) images clearly indicated that the reduction rate of the silver ions has the following order in the various polymer matrices: PVP > PVMK > PMMA, whereas the size and the distribution of the nanoparticles exhibited the reverse order. The tendency to form silver nanoparticles was explained in terms of the differences between the comparative strengths of the interactions of the silver ions with the different carbonyl oxygens in the matrices, as well as that of the silver ions with counteranions, which was characterized by X‐ray photoelectron spectroscopy (XPS) and FT‐Raman spectroscopy. It was concluded that when the concentration of free silver ions was low due to weak polymer–silver ion and strong silver ion–anion interactions, as found with PMMA, the reduction rate of silver ions to silver nanoparticles was slow. Therefore, the PMMA–silver complex membranes were less sensitive to decreases in separation performance upon UV irradiation than compared to the PVP membranes. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1168–1178, 2006  相似文献   

18.
Water and proton transport across a Nafion membrane are measured as functions of water activity and applied electric potential with a polymer electrolyte hydrogen pump. Water and proton transport across the membrane must match water and proton transport entering and leaving the electrode/membrane/vapor three phase interfaces at the anode and cathode. At low applied electric potential proton and water fluxes are correlated. At moderate to high applied electric potential the proton current is constant, independent of applied electric potential, while the water transport increases with increasing electric potential. At high applied electric potential water and proton transport become uncoupled at the membrane interfaces; water is transported across the membrane/vapor interface and protons are transported across the membrane/electrode interface. The applied electric potential drives electro‐osmosis to redistribute the water in the membrane. Water redistribution is limited by the interfacial transport of water across the membrane/vapor interface. © 2015 Wiley Periodicals, Inc. J. Polym. Sci. Part B: Polym. Phys. 2015 , 53, 1580–1589  相似文献   

19.
Understanding multi-component transport behavior through hydrated dense membranes is of interest for numerous applications. For the particular case of photoelectrochemical CO2 reduction cells (PEC-CRC), it is important to understand the multi-component transport behavior of CO2 electrochemical reduction products including mobile carboxylates (formate and acetate) and alcohols (methanol and ethanol) in the ion exchange membranes as one role of the membrane in these devices is to minimize the permeation of these CO2 reduction products to the anolyte as they often oxidize back to CO2. Cation exchange membranes (CEM) are promising candidates for such devices as they act to minimize the permeation of mobile anions, such as carboxylates. However, the design of new CEMs is necessary as the permeation of carboxylates often increases in co-permeation with alcohols. Here, we investigate the transport behavior of carboxylates and alcohols in two types of CEMs (1) a crosslinked CEM was prepared by free-radical copolymerization of a sulfonated monomer (AMPS) with a crosslinker (PEGDA), and (2) Nafion® 117. We observe an increase in both PEGDA-AMPS and Nafion® 117 diffusivities to carboxylates in co-diffusion with alcohols. We attribute this behavior to charge screening by co-diffusing alcohol that reduces the electrostatic repulsion between bound sulfonates and mobile carboxylates.  相似文献   

20.
We developed a novel measurement method of the Donnan potential difference at a charged membrane/salt solution interface. The method can measure the potential under the condition that the membrane charge density is much lower than the KCl concentration of the salt bridge. This method is very useful for obtaining the effective charge density of each layer of a bipolar membrane. The present experiments in a system of a negatively charged poly(vinyl alcohol) membrane and a single salt solution of KCl, NaCl, LiCl, CaCl2 and LaC3 revealed that the membrane effective charged density has the same value for all the ions. The experiments in mixed KCl and CaCl2 solution revealed that the potential in the system is governed mainly by the concentration of the counterion having the highest valence in the system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号