共查询到20条相似文献,搜索用时 15 毫秒
1.
Qin X Tzvetkov T Liu X Lee DC Yu L Jacobs DC 《Journal of the American Chemical Society》2004,126(41):13232-13233
Site-specific reaction of hyperthermal O+ with a self-assembled monolayer is described. Isotopic labeling experiments reveal the percentage of abstraction products formed from hydrogen atoms bound originally to the top three carbon atoms in the chain. 相似文献
2.
Jongseo Park Sun Kil Kang Taek Dong Chung Suk-Kyu Chang Hasuck Kim 《Microchemical Journal》2001,68(2-3)
Quinone-functionalized calix[4]arenes having carboxylic acid groups or thiol groups were prepared and their spontaneous adsorption on silver and gold surfaces, respectively, was studied. Since the cavity-like structure of calixarenes was immobilized on the noble metal electrodes, they exhibited a selective affinity towards specific hard metal ions in aqueous media. Voltammetric and spectroscopic studies showed the well-ordered deposition of organic receptors and entrapment of metal ions. It also was found that the repeated capture and removal of metal ions reversibly with chelating agents such as ethylenediaminetetraacetic acid (EDTA) was possible. This is the first example, to our knowledge, of voltammetric detection of hard metal ions in aqueous media using a chemically modified electrode with redox-active macrocyclic receptors. 相似文献
3.
Duffy DM Travaille AM van Kempen H Harding JH 《The journal of physical chemistry. B》2005,109(12):5713-5718
We use molecular dynamics simulations to investigate the nucleation of calcite crystals on self-assembled monolayers. We show how the presence of bicarbonate ions adsorbed on the monolayer surface can both aid nucleation and control the orientation of the growth of the crystal. Using a simple model of the nucleation process and calculated interfacial energies, we calculate the enhancement (with respect to the homogeneous nucleation rate) of the nucleation of calcite on the (012) and (0001) faces. The calculations show clearly that the (012) face is favored over the (0001) face and that the nucleation rate is enhanced for self-assembled monolayers made from molecules containing an even number of carbon atoms in the alkyl chain over those containing an odd number. 相似文献
4.
5.
The energetics of formation of thiyl-gold self-assembled monolayers is investigated using density-functional theory simulations. It is found that the chemisorption of dimethyl disulfide on the reconstructed Au(111) (22 x radical3) surface is most favored at the fcc reconstruction stripe, with initial physisorption leading to disulfide dissociation, adatom/vacancy-pair formation, and then, at a coverage of 7.8% sulfur atoms per gold atom, surface reconstruction lifting. At higher coverages, monolayer formation proceeds similarly on the unreconstructed surface, leading to surface pitting. Formation of the analogous adatom/vacancy-pair bound dissociated adsorbate complex on exposure of the clean unreconstructed surface to methanethiol is shown to be endothermic, however. 相似文献
6.
Amanda L. Eckermann Daniel J. Feld Justine A. Shaw Thomas J. Meade 《Coordination chemistry reviews》2010,254(15-16):1769-1802
Redox-active self-assembled monolayers (SAMs) provide an excellent platform for investigating electron transfer kinetics. Using a well-defined bridge, a redox center can be positioned at a fixed distance from the electrode and electron transfer kinetics probed using a variety of electrochemical techniques. Cyclic voltammetry, AC voltammetry, electrochemical impedance spectroscopy, and chronoamperometry are most commonly used to determine the rate of electron transfer of redox-activated SAMs. A variety of redox species have been attached to SAMs, and include transition metal complexes (e.g., ferrocene, ruthenium pentaammine, osmium bisbipyridine, metal clusters) and organic molecules (e.g., galvinol, C60). SAMs offer an ideal environment to study the outer-sphere interactions of redox species. The composition and integrity of the monolayer and the electrode material influence the electron transfer kinetics and can be investigated using electrochemical methods. Theoretical models have been developed for investigating SAM structure. This review discusses methods and monolayer compositions for electrochemical measurements of redox-active SAMs. 相似文献
7.
Lane JM Chandross M Lorenz CD Stevens MJ Grest GS 《Langmuir : the ACS journal of surfaces and colloids》2008,24(11):5734-5739
The interaction of water with self-assembled monolayers (SAMs) on amorphous silica is investigated using classical molecular dynamics simulation. Damage is induced through shear simulations with model atomic force microscopy (AFM) tips and separately with controlled extraction. We find that SAM coatings that have been slightly damaged (by normal loads close to 10 nN from a 10-nm-diameter AFM tip) are susceptible to water penetration and migration to the underlying hydrophilic substrate. The controlled damage studies indicate that the presence of water tends to heal damage below a threshold radius and exploits and magnifies damage above this threshold. For the systems studied here, Si(OH)3(CH2)10CH3 alkylsilane chains on amorphous silica, this threshold radius is between 0.5 and 1.0 nm. 相似文献
8.
Y. L. Cheng D. N. Batchelder S. D. Evans J. R. Henderson J. E. Lydon S. D. Ogier 《Liquid crystals》2013,40(10):1267-1275
We report a novel method of imaging micropatterned self-assembled monolayers (SAMs) using adsorbed films of thermotropic (smectic or nematic) mesophase which can then be studied by optical microscopy. Three alkylthiols, functionalized with CH3, OH and COOH groups, were used in various combinations to form patterned SAMs. Two alkylcyanobiphenyls (7CB and 9CB) were used as the liquid crystal imaging reagents. The images are formed by the contrast generated by the different alignments of adsorbed smectic or nematic films induced by different regions of the pattern. The spatial resolution is at least to 4 μm. 相似文献
9.
Multifunctional sensor systems are becoming increasingly important in electroanalytical chemistry. Together with ongoing miniaturization there is a need for micro- and nanopatterning tools for thin electroactive layers (e.g. self-assembling monolayers). This paper documents a method for production of a micro-array of different metal-porphyrin monolayers with different sensor properties. A new method has been developed for the selective and local metallization of bare porphyrin monolayers by cathodic pulsing and sweeping. The metal-porphyrin monolayers obtained were characterized by cyclic voltammetry. It was shown that porphyrin monolayers can be metallized with manganese, iron, cobalt, and nickel by use of the new method. It is expected that all types of metal-porphyrin monolayers can be produced in the same manner. 相似文献
10.
Dielectric relaxation spectroscopy is used to quantify molecular motion in alkylsilane SAMs coated on porous glass over a broad temperature range, -30 to -150 degrees C. Systematic measurements using SAMs with variable coating densities allow us to determine the effect of monolayer disorder on molecular mobility in thin molecular films. A relaxation process with an activation energy of approximately 25 kJ/mol is found to dominate dynamics of SAM-chain segments near the substrate. By introducing polar CN groups at the ends of the chain, we show that the relaxation process in the monolayer canopy can be isolated and studied. This approach can be generalized to other substituent polar groups to probe localized relaxation dynamics in surface-grafted monolayer films. 相似文献
11.
Brandow SL Chen MS Dulcey CS Dressick WJ 《Langmuir : the ACS journal of surfaces and colloids》2008,24(8):3888-3896
We describe reproducible protocols for the chemisorption of self-assembled monolayers (SAMs), useful as imaging layers for nanolithography applications, from p-chloromethylphenyltrichlorosilane (CMPS) and 1-(dimethylchlorosilyl)-2-(p,m-chloromethylphenyl)ethane on native oxide Si wafers. Film chemisorption was monitored and characterized using water contact angle, X-ray photoelectron spectroscopy, and ellipsometry measurements. Atomic force microscopy was used to monitor the onset of multilayer deposition for CMPS films, ultimately allowing film macroscopic properties to be correlated with their surface coverage and nanoscale morphologies. Although our results indicate the deposition of moderate coverage, disordered SAMs under our conditions, their quality is sufficient for the fabrication of sub-100-nm-resolution metal features. The significance of our observations on the design of future imaging layers capable of molecular scale resolution in nanolithography applications is briefly discussed. 相似文献
12.
The structure of aldehyde-terminated alkanethiol self-assembled monolayers (SAMs) on Au(111) is investigated using scanning tunneling microscopy (STM), atomic force microscopy (AFM), and density functional theory (DFT) calculations. For the first time, the structures of aldehyde-terminated SAMs are revealed with molecular resolution. SAMs of 11-mercapto-1-undecanal exhibit the basic (radical3xradical3)R30 degrees periodicity and form various c(4x2) superstructures upon annealing. In conjunction with DFT studies, the models of the (radical3xradical3)R30 degrees and the c(4x2) superstructures are constructed. In comparison with alkanethiol SAMs, the introduction of aldehyde-termini results in smaller domain size, lower degree of long-range order, large coverage of disordered areas, and higher density of missing molecules and other point defects within domains of closely packed molecules. The origin of these structural differences is mainly attributed to the strong dipole-dipole interactions among the aldehyde termini. 相似文献
13.
Zhou W Baunach T Ivanova V Kolb DM 《Langmuir : the ACS journal of surfaces and colloids》2004,20(11):4590-4595
4,4'-Dithiodipyridine (PySSPy) monolayers on Au(111) were investigated by cyclic voltammetry, X-ray photoelectron spectroscopy (XPS) and in situ scanning tunneling microscopy (STM). The studies were performed in solutions of different anions and pHs (0.1 M H2SO4, 0.1 M HClO4, 0.1 and 0.01 M Na2SO4, 0.1 and 0.01 M NaOH). The cyclic current-potential curves in H2SO4 show current peaks at about 0.4 V, which are absent for all other electrolytes at this potential. The XPS data suggest that PySSPy adsorbs via the S endgroup on the gold surface and the S-S bond breaks during adsorption. From the chemical shift of the N(ls) peak, it is concluded that in acidic media the self-assembled monolayer (SAM) is fully protonated, whereas in basic solution it is not. The pKa is estimated to be 5.3. STM studies reveal the existence of highly ordered superstructures for the SAM. In Na2SO4 and H2SO4, a (7 x mean square root of 3) structure is proposed. However, whereas in Na2SO4 solutions the superstructure does not change with potential, in 0.1 M H2SO4 the superstructure is observed only negative of the current peak at +0.4 V. At more positive potentials, the film becomes disordered. The results are compared to those for 4-mercaptopyridine (PyS) SAMs. XPS experiments and current-potential curves indicate that both molecules adsorb in the same manner on Au(111), that is, even in the case of PySSPy the adspecies is PyS. The STM results, however, call for a more subtle interpretation. While in Na2SO4 solutions the observed superstructures are the same for both SAMs, markedly different structures are found for PySSPy and PyS SAMs in 0.1 M H2SO4. 相似文献
14.
《Trends in analytical chemistry : TRAC》2002,21(6-7):439-450
New applications of self-assembled monolayers of thiol compounds on gold electrodes are reviewed. They include: (i) exploitation of electrical control of self-assembly of thiol compounds for electrically-addressable immobilization of receptor molecules onto sensor arrays; (ii) a spreader-bar technique for formation of stable nanostructures; and, (iii) use of self-assembled monolayers as selective filters for chemical sensors. 相似文献
15.
Tribological properties of alkylsilane self-assembled monolayers 总被引:1,自引:0,他引:1
Lorenz CD Chandross M Grest GS Stevens MJ Webb EB 《Langmuir : the ACS journal of surfaces and colloids》2005,21(25):11744-11748
In this study, we perform molecular dynamics simulations of adhesive contact and friction between alkylsilane Si(OH)(3)(CX(2))(10)CX(3) and alkoxylsilane Si(OH)(2)(CX(2))(10)CX(3) (where X = H or F) self-assembled monolayers (SAMs) on an amorphous silica substrate. The alkylsilane SAMs are primarily hydrogen-bonded or physisorbed to the surface. The alkoxylsilane SAMs are covalently bonded or chemisorbed to the surface. Previously, we studied the chemisorbed systems. In this work, we study the physisorbed systems and compare the tribological properties with the chemisorbed systems. Furthermore, we examine how water at the interface of the SAMs and substrate affects the tribological properties of the physisorbed systems. When less than a third of a monolayer is present, very little difference in the microscopic friction coefficient mu or shear stresses is observed. For increasing amounts of water, the values of mu and the shear stresses decrease; this effect is somewhat more pronounced for fluorocarbon alkylsilane SAMs than for the hydrocarbon SAMs. The observed decrease in friction is a consequence of a slip plane that occurs in the water as the amount of water is increased. We studied the frictional behavior using relative shear velocities ranging from v = 2 cm/s to 2 m/s. Similar to previously reported results for alkoxylsilane SAMs, the values of the measured stress and mu for the alkylsilane SAM systems decrease monotonically with v. 相似文献
16.
The interaction of atomic oxygen (O(3P)) with semifluorinated self-assembled monolayers (CF-SAMs), two different n-alkanethiolate self-assembled monolayers, and a carbonaceous overlayer derived from an x-ray modified n-alkanethiolate SAM have been studied using in situ x-ray photoelectron spectroscopy. For short atomic oxygen exposures, CF-SAMs remain intact, an effect ascribed to the inertness of C-F and C-C bonds toward atomic oxygen and the well-ordered structure of the CF-SAMs. Following this initial induction period, atomic oxygen permeates through the CF3(CF2)7 overlayer and initiates reactions at the film/substrate interface, evidenced by the formation of sulfonate (RSO3) species and Au2O3. These reactions lead to the desorption of intact adsorbate chains, evidenced by the loss of carbon and fluorine from the film while the C(1s) spectral envelope and the C(1s)/F(1s) ratio remain virtually constant. In contrast, the reactivity of atomic oxygen with alkanethiolate SAMs is initiated at the vacuum/film interface, producing oxygen-containing carbon functional groups. Subsequent reactions of these new species with atomic oxygen lead to erosion of the hydrocarbon film. Experiments on the different hydrocarbon-based films reveal that the atomic oxygen-induced kinetics are influenced by the thickness as well as the structural and chemical characteristics of the hydrocarbon overlayer. Results from this investigation are also discussed in the context of material erosion by AO in low Earth orbit. 相似文献
17.
Hölzl M Tinazli A Leitner C Hahn CD Lackner B Tampé R Gruber HJ 《Langmuir : the ACS journal of surfaces and colloids》2007,23(10):5571-5577
In the present study, oligo(ethylene glycol) (OEG)-linked alkanethiols were synthesized which carry a vicinal diol on one end of the OEG chain. After self-assembled monolayer (SAM) formation on gold, the vicinal diols were converted into aldehyde functions by exposure to aqueous NaIO4, as previously used for SAMs with OEG chains buried in the center of the SAM [Jang et al. Nano Lett. 2003, 3, 691-694]. Mixed SAMs with latent aldehydes on 5% of the OEG termini showed high protein resistance, which greatly slowed the kinetics of protein coupling on the time scale of minutes. Small bioligands (such as biocytin hydrazide) or small heterobifunctional crosslinkers (maleimidopropionyl hydrazide, pyridyldithiopropionyl hydrazide) with hydrazide functions were efficiently bound to the aldehyde functions on the SAM, providing for specific capture of streptavidin or for fast covalent binding of proteins with free thiols or maleimide functions, respectively. In conclusion, OEG-terminated SAMs with latent aldehydes serve as protein-resistant sensor surfaces which are easily functionalized with small ligands or with heterobifunctional crosslinkers to which the bait molecule is attached in a subsequent step. 相似文献
18.
Díez-Pérez I Luna M Teherán F Ogletree DF Sanz F Salmeron M 《Langmuir : the ACS journal of surfaces and colloids》2004,20(4):1284-1290
The interaction of water with self-assembled alkylsilane monolayers on mica substrates has been studied using an atomic force microscope operated in contact, noncontact, and electrical polarization modes. Complete monolayer films were found to be effective in blocking water adsorption. On partially covered surfaces water was found to produce large changes in the conductivity and surface potential of the exposed mica regions. It was also found that water could penetrate films near defects and at island edges. 相似文献
19.
Dynamics of collisions of hydroxyl radicals with fluorinated self-assembled monolayers 总被引:1,自引:0,他引:1
We present a classical trajectory study of the dynamics of collisions between OH radicals and fluorinated self-assembled monolayers
(F-SAMs). The gas/surface interaction potential required in the simulations has been derived from high-level ab initio calculations
(focal-point-CCSD(T)/aug-cc-pVQZ) of various approaches of OH to a model fluorinated alkane. The two lowest-energy doublet
potential energy surfaces considered in the electronic structure calculations have been averaged to produce a pairwise analytic
potential. This analytic potential has been subsequently employed to propagate classical trajectories of collisions between
OH and F-SAMs at initial conditions relevant to recent experiments on related systems. The calculated rotational distributions
of the inelastically scattered OH agree well with the experiment, which serves to validate the accuracy of the simulations.
Investigation of the dynamics of energy transfer for different initial rotational states of OH indicates that an increase
in the initial rotation of OH results in increases in both the final average OH rotational and translational energy and in
a slight decrease in the amount of energy transferred to the surface. Analysis of the dynamics as a function of the desorption
angle of OH from the surface shows that while there is a correlation between the final scattering angle and OH’s amount of
final translational energy, the amount of rotational energy in OH is largely independent of the desorption angle. The mechanism
of the collisions is found to be mostly direct; in about 90% of most trajectories, OH only collides with the surface once
before desorbing, which exemplifies the rigidity of fluorinated monolayer surfaces and their inability to efficiently accommodate
gas species. 相似文献
20.
Fiegland LR Saint Fleur MM Morris JR 《Langmuir : the ACS journal of surfaces and colloids》2005,21(7):2660-2661
Reactions of gas-phase ozone with alkene-terminated alkanethiol self-assembled monolayers on Au are explored using reflection-absorption infrared spectroscopy (RAIRS). The experiments are performed by using a directional doser to control the ozone flux onto the surface and in situ high vacuum techniques to eliminate reactions with atmospheric contaminants. We find that reactions between ozone and the C=C terminal group proceed through the formation of a carboxylic acid moiety that subsequently converts to an interchain carboxylic acid anhydride. 相似文献