首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Schiff’s base condensation of 2,6-diformyl-4-R-phenol and affords 34-membered macrocyclic tetraiminodiphenol compounds, (R = H and R′ = iPr, 1; R = Me and R′ = iPr, 2; R = F and R′ = iPr, 3; R = Me and R′ = Et, 4; R = F and R′ = Et, 5) in good yields (47-62%), from which dinuclear nickel complexes, (R = H and R′ =  iPr, 6; R = Me and R′ = iPr, 7; R = F and R′ = iPr, 8) are prepared. Molecular structures of 2, dipotassium salt of 1, and 7 were confirmed by X-ray crystallography. Addition of B(C6F5)3 to a toluene solution of 6-8 gives insoluble precipitates which show good activity for ethylene polymerization.  相似文献   

2.
Short straight-chain alkylamine based hyperbranched molecules and their corresponding salicylaldimine nickel complexes have been synthesized in high yield and characterized by FTIR, 1H-NMR and mass spectrometry. The optimal reaction parameters were determined under the catalytic system of methylaluminoxane (MAO) as co-catalyst and toluene as solvent. Under these conditions, the effect of catalyst structure, solvent and co-catalyst were determined. Upon activation of MAO in toluene, ethylene oligomerization products were homogeneous distribution of butene, hexene and octene with trace higher olefin. The same catalytic system under cyclohexane and methyl cyclohexane as solvent, however, produced majority of butene. Under the activation of EtAlCl2, Et2AlCl and EASC as co-catalyst in toluene, ethylene oligomerization reaction was tandem with Friedel-Crafts reaction in catalytic system.  相似文献   

3.
A series of α-aminopyridines in the form of (2,6-C(6)H(3)N)(R(1))(CHR(2)NR(3)R(4)) (R(1) = R(2) = H R(3) = H R(4) = (i)Pr (L1a), R(4) = (t)Bu (L1b), R(4) = Ph (L1c), R(4) = 2,6-Me(2)C(6)H(3) (L1d), R(4) = 2,6-(i)Pr(2)C(6)H(3) (L1e), R(1) = R(2) = H R(3) = R(4) = Et (L1f), R(1) = H R(2) = Me R(3) = H R(4) = (i)Pr (L2a), R(4) = Ph (L2c), R(4) = 2,6-Me(2)C(6)H(3) (L2d), R(4) = 2,6-(i)Pr(2)C(6)H(3) (L2e), R(1) = Me R(2) = H R(3) = H R(4) = 2,6-(i)Pr(2)C(6)H(3) (L3e)) and β-aminopyridines in the form of (2-C(6)H(4)N)(CH(2)CH(2)NR(1)R(2)) (R(1) = H R(2) = (i)Pr (4a), R(2) = (t)Bu (L4b), R(1) = R(2) = Et (L4f)) have been prepared. Their corresponding halonickel complexes 1a-4f are synthesized by ligand substitution from (DME)NiBr(2) and the molecular structures are characterized. Four types of coordination modes include four-coordinate mononuclear species with one ligand, five-coordinate mononuclear species with two ligands, five-coordinate dinuclear species with two ligands, and a six-coordinate polymeric framework were determined by X-ray crystallography. Using methylaluminoxanes (MAO) as the activator, the nickel complexes can catalyze ethylene polymerization under moderate pressure and ambient temperature. The activity reaches 10(5) g PE mol(-1) Ni h. The PE products with high branching and high crystallinity have M(n) ~ 10(3) with PDI < 2.  相似文献   

4.
Addition of primary amines to N-[2-(diphenylphosphanyl)benzoyloxy]succinimide affords 2-diphenylphosphanylbenzamides, Ph2PC6H4C(O)NHR (R = C(CH3)3, 3; R = H, 4; R = CH2CH2CH3, 5; R = CH(CH3)2, 6). Addition of NiCl(eta3-CH2C6H5)(PMe3) to the deprotonated potassium salts of the amides and subsequent treatment of two equivalents of B(C6F5)3 to the resulting products furnishes eta3-benzyl zwitterionic nickel(II) complexes, [Ph2PC6H4C(O)NR-kappa2N,P]Ni(eta3-CH2C6H5) (R = C6H5, 9; R = C(CH3)3, 10; R = H, 11; R = CH2CH2CH3, 12; R = CH(CH3)2, 13). Solid structures of 9, 11, 13 and the intermediate eta1-benzyl nickel(II) complexes, [Ph2PC6H4C(O)NR-kappa2N,P]Ni(eta1-CH2C6H5)(PMe3) (R = C6H5, 7; R = C(CH3)3, 8) were determined by X-ray crystallography. When ethylene is added to the eta3-benzyl zwitterionic nickel(II) complexes, butene is obtained by the complexes 9-12 but complex 13 provides very high molecular-weight branched polyethylene (Mw, approximately 1300000) with excellent activity (up to 5200 kg mol-1 h-1 at 100 psi gauge).  相似文献   

5.
New P-N ligands featuring a phosphino group and an iminophosphorane moiety were successfully employed in the nickel-catalysed dimerisation of ethylene.  相似文献   

6.
7.
The kinetics of the formation of a paramagnetic nickel(I) complex from bis(η3-allyl)nickel under conditions of catalytic norbornadiene dimerization is reported. It is demonstrated by ESR and GLC that the concentrations of Ni(I), norbornadiene and its pentacyclic dimers change in the same way. It might be inferred from this finding that Ni(I) is involved in the catalytic process as an intermediate. However, experiments on model systems have not confirmed this assumption. At the same time, they have not ruled out the participation of the paramagnetic complex in side catalytic reactions. The presence of Ni(I) in the reaction system is connected with the presence of free norbornadiene there. Hypotheses as to the probable structure and formation mechanism of the paramagnetic Ni(I) are suggested.  相似文献   

8.
Phosphorous-bridged bisphenoxy titanium complexes were synthesized and their ethylene polymerization behavior was investigated. Bis[3-tert-butyl-5-methyl-2-phenoxy](phenyl)phosphine tetrahydrofuran titanium dichloride (4a) was obtained by treatment of 3 equiv of n-BuLi with bis[3-tert-butyl-2-hydroxy-5-methylphenyl](phenyl)phosphine hydrochloride salt (3a) followed by TiCl4(THF)2 in THF. THF-free complexes 5a-5d were synthesized more conveniently by the direct reaction of MOM-protected ligands (2a-2d) with TiCl4 in toluene. X-ray analysis of 4a revealed that the ligand is bonded to the octahedral titanium (IV) center in a facial fashion and two chlorine atoms possess cis-geometry. Complexes 4a and 5a-5d were utilized as catalyst precursors for ethylene polymerization. Complex 5c gave high molecular weight polyethylene (Mw = 1,170,000, Mw/Mn = 2.0) upon activation with Al(iBu)3/[Ph3C][B(C6F5)4] (TB). Ethylene polymerization activity of 5d activated with Al(iBu)3/TB reached 49.0 × 106 g mol (cat) −1 h−1.  相似文献   

9.
A series of anilinonaphthoquinone-based nickel complexes, Ni(C10H5O2NAr)(Ph)(PPh3) (Ar = C6H3-2,6-Me (1c); Ar = C6H2-2,4,6-Me (2c); Ar = C6H3-2,6-Et (3c)), were synthesized and the structures of 1c-3c were confirmed by single crystal X-ray analyses. The anilinonaphthoquinone-ligated nickel complexes activated with B(C6F5)3 showed high activities for ethylene polymerization at 40 °C under atmospheric pressure of ethylene and gave polyethylene with long chain branches and short chain branches. The activity of these systems was decreased by lowering polymerization temperature accompanied by increase in molecular weight. The number of the chain branches was also decreased with lowering polymerization temperature and increasing the bulkiness of the ligand.  相似文献   

10.
A series of N-(2-pyridyl)benzamides (1)-(11) and their nickel complexes, [N-(2-pyridyl)benzamide]dinickel(II) di-μ-bromide dibromide (12)-(16) and (aryl)[N-(2-pyridyl)benzamido](triphenylphosphine)nickel(II) (17)-(24), were synthesized and characterized. The single-crystal X-ray analysis revealed that 12 and 14 are binuclear nickel complexes bridged by bromine atoms and each nickel atom adopts a distorted trigonal bipyramidal geometry. The key feature of the complexes 17, 19 and 23 is each has a six-membered nickel chelate ring including a deprotonated secondary nitrogen atom and an O-donor atom. The nickel complexes show moderate to high catalytic activity for ethylene oligomerization with methylaluminoxane (MAO) as cocatalyst. The activity of 12-16/MAO systems is up to 3.3 × 104 g mol−1 h−1 whereas for 17-24/MAO systems it is up to 4.94 × 105 g mol−1 atm−1 h−1. The influence of Al/Ni molar ratio, reaction temperature, reaction period and PPh3/Ni molar ratio on catalytic activity was investigated.  相似文献   

11.
The Ni amide and hydroxide complexes [(PCP)Ni(NH(2))] (2; PCP=bis-2,6-di-tert-butylphosphinomethylbenzene) and [(PCP)Ni(OH)] (3) were prepared by treatment of [(PCP)NiCl] (1) with NaNH(2) or NaOH, respectively. The conditions for the formation of 3 from 1 and NaOH were harsh (2 weeks in THF at reflux) and a more facile synthetic route involved protonation of 2 with H(2)O, to generate 3 and ammonia. Similarly the basic amide in 2 was protonated with a variety of other weak acids to form the complexes [(PCP)Ni(2-Me-imidazole)] (4), [(PCP)Ni(dimethylmalonate)] (5), [(PCP)Ni(oxazole)] (6), and [(PCP)Ni(CCPh)] (7), respectively. The hydroxide compound 3, could also be used as a Ni precursor and treatment of 3 with TMSCN (TMS=trimethylsilyl) or TMSN(3) generated [(PCP)Ni(CN)] (8) or [(PCP)Ni(N(3))] (9), respectively. Compounds 3-7, and 9 were characterized by X-ray crystallography. Although 3, 4, 6, 7, and 9 are all four-coordinate complexes with a square-planar geometry around Ni, 5 is a pseudo-five-coordinate complex, with the dimethylmalonate ligand coordinated in an X-type fashion through one oxygen atom, and weakly as an L-type ligand through another oxygen atom. Complexes 2-9 were all reacted with carbon dioxide. Compounds 2-4 underwent facile reaction at low temperature to form the κ(1)-O carboxylate products [(PCP)Ni{OC(O)NH(2)}] (10), [(PCP)Ni{OC(O)OH}] (11), and [(PCP)Ni{OC(O)-2-Me-imidazole}] (12), respectively. Compounds 10 and 11 were characterized by X-ray crystallography. No reaction was observed between 5-9 and carbon dioxide, even at elevated temperatures. DFT calculations were performed to model the thermodynamics for the insertion of carbon dioxide into 2-9 to form a κ(1)-O carboxylate product and understand the pathways for carbon dioxide insertion into 2, 3, 6, and 7. The computed free energies indicate that carbon dioxide insertion into 2 and 3 is thermodynamically favorable, insertion into 8 and 9 is significantly uphill, insertion into 5 and 7 is slightly uphill, and insertion into 4 and 6 is close to thermoneutral. The pathway for insertion into 2 and 3 has a low barrier and involves nucleophilic attack of the nitrogen or oxygen lone pair on electrophilic carbon dioxide. A related stepwise pathway is calculated for 7, but in this case the carbon of the alkyne is significantly less nucleophilic and as a result, the barrier for carbon dioxide insertion is high. In contrast, carbon dioxide insertion into 6 involves a single concerted step that has a high barrier.  相似文献   

12.
Three bidentate salicylaldimine nickel complexes containing different long-chain alkyl groups in their ligand backbone were synthesized in good yield. All the bidentate salicylaldimine ligands and their nickel complexes were fully characterized by FT-IR, 1H NMR, UV spectroscopies, and mass spectrometry. Three bidentate nickel complexes were evaluated as catalyst precursors in ethylene oligomerization. Upon activation with methylaluminoxane (MAO), the catalytic activity was 5.75 × 105 g/(mol Ni·h) and the oligomers were mainly butenes (52.10%) and octenes (32.63%) for bidentate nickel complex with 1-tetradecyl as core in the ligand backbone (R14-complex) using toluene as solvent. However, bidentate nickel complex with 1-octadecyl as core in the ligand backbone (R18-complex) produced mainly octenes (59.38%) and C10 + olefins (29.01%) and the catalytic activity was 2.23 × 105 g/(mol Ni·h). After activation with ethylaluminum sesquichloride (EASC) in toluene, three nickel complexes yielded mainly C10 + products which contained Friedel-Craft alkylated-toluene, and their catalytic activities were above 1.5 × 106 g/(mol Ni·h). For the bidentate salicylaldimine nickel catalysts with hyperbranched molecules as ligand backbones, the solvent and the reaction conditions had a large effect on catalytic activity as well as oligomerization distribution except the structure of the catalyst and the co-catalyst.  相似文献   

13.
Spectral studies of some fluorinated glyoxaliminehydrazones reveal that in these compounds the hydrazoneimino tautomer with hydrogen bonding via the imino-N predominates. The complexation of this ligands with nickel involves the N-atoms of the observed tautomeric form.  相似文献   

14.
15.
A series of nickel (II) complexes ligated by 2-imino-1,10-phenanthrolines were synthesized and characterized by elemental and spectroscopic analysis as well as by single-crystal X-ray crystallography. X-ray crystallographic analysis reveals complexes 3, 5, 7 and 11 as the five-coordinated distorted trigonal-bipyramidal geometry. Upon activation with Et2AlCl, these complexes exhibited considerably high activity for ethylene oligomerization (up to 3.76 × 107 g mol−1(Ni) h−1 for 12 with 10 equiv. of PPh3). The ligand environment and reaction conditions significantly affect the catalytic activity of their nickel complexes.  相似文献   

16.
Nickel complexes 1–4 ligated with 2,9-disubstituted-1,10-phenanthroline were synthesized and characterized by FT-IR spectra and elemental analysis. The molecular structure of complex 2 was confirmed by X-ray crystal diffraction analysis. Activated with methylaluminoxane (MAO), those complexes showed moderate activities for ethylene oligomerization. Published in Kinetika i Kataliz, 2007, Vol. 48, No. 5, pp. 710–714. This article was submitted by the authors in English.  相似文献   

17.
When activated by Et2AlCl phosphine-containing homogeneous nickel complexes and their heterogenized analogs (HMC) formed on silochrome S-120 modified by NH2 and N(PPh2)2 groups differ significantly in their effectiveness in ethylene dimerization. The catalytic activity of Ni-HMC-Et2AlCl depends on how the HMC was formed. Ni-HMC-I obtained by ligand exchange on chemically modified silochrome is 5–15 times more effective than Ni-HMC-II synthesized from the gas phase. The selectivity in formation of -olefins (C4 + C6) is 4–5 times higher in the presence of Ni-HMC than for its homogeneous analogs.For previous communication, see [1].Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 3, pp. 516–520, March, 1990.  相似文献   

18.
New titanium complexes of general formula [(ArO)(n)Ti(Oi-Pr)((4-n))] were synthesized and used as pre-catalysts for the selective dimerization of ethylene to 1-butene. The complexes were prepared in cyclohexane using [Ti(Oi-Pr)(4)] and one or two equivalents of the corresponding phenols (ArOH) at room temperature. In this work, both monodentate and chelating phenols were evaluated. For alkyl-substituted phenols, it was demonstrated that large steric hindrance at both ortho and ortho' positions selectively yielded the mono-substituted complexes [(ArO)Ti(Oi-Pr)(3)]. Substitution at only one of the ortho positions allowed both the mono- and the di-substituted Ti complexes to be isolated. When a heteroatom was introduced on the phenol backbone, di-substitution systematically occurred except with phenols presenting a hemilabile -CH(2)NR(2) group at the ortho position. Upon activation with 3 equiv. of AlEt(3) at 20 bar and 60 °C, all the complexes selectively dimerized ethylene to 1-butene (>86% of butenes among which 99% of 1-butene). An increase of the steric bulk at the ortho position of the ligand or the introduction of a functional group led to decreased activity compared to [Ti(Oi-Pr)(4)].  相似文献   

19.
1.  The complexes ArNiXL2 and HNiXL2 (X is halide, L is tertiary phosphine) in the presence of zinc catalyze the condensation of bromobenzene with styrene (stilbene formation).
2.  The yield of stilbene and 1,3-diphenylbutene, the dimerization product of styrene, in the presence of pyridine is lowered according to the substitution of phenyl groups on the phosphorus ligand L by alkyl (ethyl, cyclohexyl) groups.
3.  Change of triphenylphosphine to phenylethylphosphines and tricyclohexylphosphine in the hydride complex HNi(X)(PR3)2, the catalytic activity of which falls in the order X=ClBr>I, favors the dimerization of styrene in the absence of pyridine.
Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 4, pp. 782–786, April, 1989.  相似文献   

20.
A series of 2‐aminopyridine Ni(II) complexes bearing different substituent groups {(2‐PyCH2NAr)NiBr, Ar = 2,4,6‐trimethylphenyl ( 3a) , 2,6‐dichlorophenyl ( 3b ), 2,6‐dimethylphenyl ( 3c) , 2,6‐diisopropylphenyl ( 3d ), 2,6‐difluorophenyl ( 3e ); (2‐PyCH2NHAr)2NiBr2, Ar = 2,6‐diisopropylphenyl ( 4a )} have been synthesized and investigated as precatalysts for ethylene polymerization in the presence of methylaluminoxane (MAO). High molecular weight branched polymers as well as short‐chain oligomers were simultaneously produced with these complexes. Enhancing the steric bulk of the ortho‐aryl‐substituents of the catalyst resulted in higher ratio of solid polymer to oligomer and higher molecular weight of the polymer. With ortho‐haloid‐substitution, the catalysts afforded a product with low polymer/oligomer ratio ( 3b ) and even only oligomers ( 3e ) in which C14H28 had the maximum content. Compared with complex 3d containing ionic ligand, complex 4a containing neutral ligand exhibited obviously low catalytic activity for ethylene polymerization. The molecular weight, molecular weight distribution, and microstructure of the resulted polymer were characterized by gel permeation chromatography and 13C NMR spectrogram. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1618–1628, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号