首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Possible structures of the carbon-nitrogen clusters of the form C(m)N(n) (m = 1-4, n = 1-4, m + n = 2-5) were predicted for the neutral, anion, and cation species in the singlet, doublet, and triplet states, whenever appropriate. The calculations were performed at the G3, MP2(fc)/6-311+G*, and B3LYP/6-311+G* levels of theory. Several molecular properties related to the experimental data--such as the electronic energy, equilibrium geometry, binding energy, HOMO-LUMO gap (HLG), and spin contamination --were calculated. In addition the vertical electron attachment, the adiabatic electron affinity, and vertical ionization energy, of the neutral clusters were calculated. Most of the predicted lowest energy structures were linear, whereas bent structures became more stable with the increase of the cluster size and increase of the number of the N atoms. In most of the predicted lowest energy structures, the N atom prefers the terminal position with acetylenic bond. The calculated BE of the predicted clusters increases with the increase of the cluster size for the neutral and cation clusters but decreases with the increase of the cluster size for the anion clusters. The predicted clusters are characterized by high HLG of about 11 eV on the average, with that of the anion clusters is smaller than that for the neutral and cation clusters. It is concluded then that the anion clusters are less stable than the corresponding neutral and cation clusters. Finally, the N(2) loss reaction is treated.  相似文献   

2.
We report the observation of negative electron binding energies (BEs) in a triply charged anion, 1-hydroxy-3,6,8-pyrene-trisulfonate (HPTS(3-)). Low-temperature photoelectron spectra were obtained for HPTS(3-) at several photon energies, revealing three detachment features below 0 electron BE. The HPTS(3-) trianion was measured to possess a negative BE of -0.66 eV. Despite the relatively high excess energy stored in HPTS(3-), it was observed to be a long-lived anion due to its high repulsive Coulomb barrier (RCB) ( approximately 3.3 eV), which prevents spontaneous electron emission. Theoretical calculations were carried out, which confirmed the negative electron BEs observed. The calculations further showed that the highest occupied molecular orbital in HPTS(3-) is an antibonding pi orbital on the pyrene rings, followed by lone pair electrons in the peripheral -SO(3) (-) groups. Negative electron BE is a unique feature of multiply charged anions due to the presence of the RCB. Such metastable species may be good models to study electron-electron and vibronic interactions in complex molecules.  相似文献   

3.
A home-made magnetic-bottle time-of-flight anion photoelectron spectrometer(PES)for the investigation of binary metal cluster geometry and electron structure is described. The photoelectron spectrometer is installed near the first space focus of home-made reflectron time of flight mass spectrometer(RTOFMS),coupled with laser ablation,pulse supersonic molecular carrier gas cluster source. The magnetic-bottle photoelectron spectrometer's resolution is about 0. 1 eV for 1 eV photoelectrons. The adiabatic electron affinity energies of neutral clusters and some features relative to their excited states can be obtained from the spectra,i. e. ,from the anion's spectra,not only the features of the anion but also the neutral clusters' features can be investigated. The detailed design,construction,and operation of the new apparatus are presented. And studied PbM-(M = Cu,Ag,Au)binary metal cluster anions,the results give clear diagram about their structures and the bond interactions. The adiabatic electron affinity energies obtained by the photoelectron spectrometer agree well with the calculated results using relativistic density functional theory(DFT)method. It show that this anion photoelectron spectrometer can be well used in studying binary metal cluster anions in the experiment condition.  相似文献   

4.
Aluminium cluster anions (Al n ? ) are produced by laser vaporization without additional ionization and cooled by supersonic expansion. Photoelectrons from mass-identified anion bunches (n=2...25) are detached by laser light (hv=3.68 eV) and undergo energy analysis in a magnetic bottle-type time-of-flight spectrometer. The measurements provide information about the electronic excitation energies from ionic ground states to neutral states of the clusters. In contrast to bulk aluminium these cluster photoelectron spectra partially have well-resolved bands which originate from low-lying excited bands. For small clusters, especially the aluminium dimer and trimer, quantum-chemical calculations will be compared to the measurements. The electron affinity size dependence of larger clusters shows conclusive evidence for “shell” effects.  相似文献   

5.
TiO2 is a wide-band-gap semiconductor, and it is an important material for photocatalysis. Here we report an experimental investigation of the electronic structure of (TiO2)n clusters and how their band gap evolves as a function of size using anion photoelectron spectroscopy (PES). PES spectra of (TiO2)n- clusters for n = 1-10 have been obtained at 193 nm (6.424 eV) and 157 nm (7.866 eV). The high photon energy at 157 nm allows the band gap of the TiO2 clusters to be clearly revealed up to n = 10. The band gap is observed to be strongly size-dependent for n < 7, but it rapidly approaches the bulk limit at n = 7 and remains constant up to n = 10. All PES features are observed to be very broad, suggesting large geometry changes between the anions and the neutral clusters due to the localized nature of the extra electron in the anions. The measured electron affinities and the energy gaps are compared with available theoretical calculations. The extra electron in the (TiO2)n- clusters for n > 1 appears to be localized in a tricoordinated Ti atom, creating a single Ti3+ site and making these clusters ideal molecular models for mechanistic understanding of TiO2 surface defects and photocatalytic properties.  相似文献   

6.
The ground- and several excited states of metal aromatic clusters, namely NaM(4) and NaM(4) (+/-) (M=Al,Ga,In) clusters have been investigated by employing complete active-space self-consistent-field followed by multireference singles and doubles configuration interaction computations that included up to 10 million configurations and other methods. The ground states NaM(4) (-) of aromatic anions are found to be symmetric C(4nu) ((1)A(1)) electronic states with ideal square pyramid geometries. While the ground state of NaIn(4) is also predicted to be a symmetric C(4nu) ((2)A(1)) square pyramid, the ground state of the NaAl(4) cluster is found to have a C(2nu) ((2)A(1)) pyramid with a rhombus base, and the ground state of NaGa(4) possesses a C(2nu) ((2)A(1)) pyramid with a rectangle base. In general, these structures exhibit two competing geometries, viz., an ideal C(4nu) structure and a distorted rhomboidal or rectangular pyramid structure (C(2nu)). All of the ground states of the NaM(4) (+) (M=Al,Ga,In) cations are computed to be C(2nu) ((3)A(2)) pyramids with rhombus bases. The equilibrium geometries, vibrational frequencies, dissociation energies, adiabatic ionization potentials, adiabatic electron affinities for the electronic states of NaM(4) (M=Al,Ga,In), and their ions are computed and compared with experimental results and other theoretical calculations. On the basis of our computed excited states energy separations, we have tentatively suggested assignments to the observed X and A states in the anion photoelectron spectra of Al(4)Na(-) reported by Li et al. [X. Li, A. E. Kuznetov, H. F. Zheng, A. I. Boldyrev, and L. S. Wang, Science 291, 859 (2001)]. The X state can be assigned to a C(2nu) ((2)A(1)) rhomboidal pyramid. The A state observed in the anion spectrum is assigned to the first excited state ((2)B(1)) of the neutral NaAl(4) with the C(4nu) symmetry. The assignments of the excited states are consistent with the experimental excitation energies and the previous Green's function-based methods for the vertical transition energy separations between the X and A bands.  相似文献   

7.
By using laser ablation of the mixtures of a transition metal (M: Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, Pd, Ag) plus lead, M/Pb binary cluster anions were observed except for Zn, and the number of transition metal atoms contained in the binary clusters is at most 4. This behavior is different from that reported previously for M/Ge binary clusters. The experiments indicate that it is also very difficult to form Al/Pb clusters. The distribution patterns of M/Pb binary alloy cluster anions are remarkably similar to those of pure Pb clusters, consistent with a formation mechanism in which transition metal atoms are sequentially attached to [M(x-1)Pb(y)](-) clusters and thus form [M(x)Pb(y)](-) clusters by a simple condensation process. As the number of transition metal atoms increases, the intensities of binary clusters gradually decrease. It is proposed that [MPb(4)](-) and [MPb(5)](-) cluster anions might be the unit building blocks of M/Pb binary cluster anions, and the layer packing sequences for magic clusters are predicted on this basis. The [M(x)Pb(y)](-) binary clusters containing 13 atoms (x + y = 13; x not equal 0) are proposed to have an icosahedral structure.  相似文献   

8.
The geometric and electronic structures of both neutral and negatively charged lead sulfide clusters, (PbS)(n)/(PbS)(n)(-) (n = 2-10) were investigated in a combined anion photoelectron spectroscopy and computational study. Photoelectron spectra provided vertical detachment energies (VDEs) for the cluster anions and estimates of electron affinities (EA) for their neutral cluster counterparts, revealing a pattern of alternating EA and VDE values in which even n clusters exhibited lower EA and VDE values than odd n clusters up until n = 8. Computations found neutral lead sulfide clusters with even n to be thermodynamically more stable than their immediate (odd n) neighbors, with a consistent pattern also being found in their HOMO-LUMO gaps. Analysis of neutral cluster dissociation energies found the Pb(4)S(4) cube to be the preferred product of the queried fragmentation processes, consistent with our finding that the lead sulfide tetramer exhibits enhanced stability; it is a magic number species. Beyond n = 10, computational studies showed that neutral (PbS)(n) clusters in the size range, n = 11-15, prefer two-dimensional stacking of face-sharing lead sulfide cubical units, where lead and sulfur atoms possess a maximum of five-fold coordination. The preference for six-fold coordination, which is observed in the bulk, was not observed at these cluster sizes. Taken together, the results show a preference for the formation of slightly distorted, fused cuboids among small lead sulfide clusters.  相似文献   

9.
The geometrical and electronic properties of the anionic and neutral V2O6 clusters were studied with the spin unrestricted hybrid density functional B3LYP method. The calculated ground states of both clusters are different from the previous theoretical results. The ground state of V2O6- is found to be a doublet with C2v symmetry, while a doublet with D2h symmetry was previously obtained by Vyboishchikov and Sauer. For neutral V2O6, the ground state is an open-shell singlet with D2h symmetry whose energy is very close to that of the triplet state. In contrast, a closed-shell singlet with D2h symmetry was obtained by Vyboishchikov and Sauer, and Calatayud et al. found a triplet ground state with Cs symmetry. Moreover,the calculated adiabatic and vertical detachment energies of the anion cluster are in much better agreement with the experimental results of photoelectron spectroscopy than previous theoretical values.  相似文献   

10.
11.
The structures, energetics, electronic properties, and spectra of hydrated hydroxide anions are studied using density functional and high level ab initio calculations. The overall structures and binding energies are similar to the hydrated anion clusters, in particular, to the hydrated fluoride anion clusters except for the tetrahydrated clusters and hexahydrated clusters. In tetrahydrated system, tricoordinated structures and tetracoordinated structures are compatible, while in pentahydrated systems and hexahydrated systems, tetracoordinated structures are stable. The hexahydrated system is similar in structure to the hydrated chloride cluster. The thermodynamic quantities (enthalpies and free energies) of the clusters are in good agreement with the experimental values. The electronic properties induced by hydration are similar to hydrated chloride anions. The charge-transfer-to-solvent energies of these hydrated-hydroxide anions are discussed, and the predicted ir spectra are used to explain the experimental data in terms of the cluster structures. The low-energy barriers between the conformations along potential energy surfaces are reported.  相似文献   

12.
Anion photoelectron spectroscopy and quantum chemical calculations at the density functional theory (DFT), coupled cluster theory (CCSD(T)), and complete active space self-consistent field (CASSCF) theory levels are employed to study the reduced transition metal oxide clusters M(4)O(10)(-) (M = Cr, W) and their neutrals. Photoelectron spectra are obtained at 193 and 157 nm photon energies, revealing very different electronic structures for the Cr versus W oxide clusters. The electron affinity and HOMO-LUMO gap are measured to be 3.68 ± 0.05 and 0.7 eV, respectively, for the Cr(4)O(10) neutral cluster, as compared to 4.41 ± 0.04 and 1.3 eV for W(4)O(10). A comprehensive search is performed to determine the ground-state structures for M(4)O(10) and M(4)O(10)(-), in terms of geometry and electronic states by carefully examining the calculated relative energies at the DFT, CCSD(T), and CASSCF levels. The ground states of Cr(4)O(10) and Cr(4)O(10)(-) have tetrahedral structures similar to that of P(4)O(10) with the anion having a lower symmetry due to a Jahn-Teller distortion. The ground states of W(4)O(10) and W(4)O(10)(-) have butterfly shape structures, featuring two fused five-member rings with a metal-metal multiple bond between the central metal atoms. The much stronger WW bonding than the CrCr bonding is found to be the primary cause for the different ground state structures of the reduced Cr(4)O(10)(0/-) versus W(4)O(10)(0/-) oxide clusters. The photoelectron spectra are assigned by comparing the experimental and theoretical adiabatic and vertical electron detachment energies, further confirming the determination of the ground electronic states of M(4)O(10) and M(4)O(10)(-). The time-dependent DFT method is used to calculate the excitation energies of M(4)O(10). The TD-DFT results in combination with the self-consistently calculated vertical detachment energies for some of the excited states at the DFT and CCSD(T) levels are used to assign the higher energy bands. Accurate clustering energies and heats of formation of M(4)O(10) are calculated and used to calculate accurate reaction energies for the reduction of M(4)O(12) to M(4)O(10) by CH(3)OH, as well as for the oxidation of M(4)O(10) to M(4)O(12) by O(2). The performance of the DFT method with the B3LYP and BP86 functionals in the calculations of the relative energies, electron detachment energies, and excitation energies are evaluated, and the BP86 functional is found to give superior results for most of these energetic properties.  相似文献   

13.
We report on a study of the photodissociation spectroscopy of weakly bound Zn+(H2O) and Zn+(D2O) complexes. The work is supported by ab initio electronic structure calculations of the ground and low-lying excited energy surfaces. We assign two molecular absorption bands in the near UV correlating to Zn+ (4s-4p)-based transitions, and identify vibrational progressions associated with both intermolecular and intramolecular vibrational modes of the cluster. Partially resolved rotational structure is consistent with a C(2V) equilibrium complex geometry. Experimental spectroscopic constants are in very good agreement with ab initio theoretical predictions. Results are compared with previous work on main group and transition metal ion-H2O clusters.  相似文献   

14.
Vanadium oxide clusters, (V2O5)n, have been predicted to possess interesting polyhedral cage structures, which may serve as ideal molecular models for oxide surfaces and catalysts. Here we examine the electronic properties of these oxide clusters via anion photoelectron spectroscopy for (V2O5)n(-) (n = 2-4), as well as for the 4d/5d species, Nb4O10(-) and Ta4O10(-). Well-resolved photoelectron spectra have been obtained at 193 and 157 nm and used to compare with density functional calculations. Very high electron affinities and large HOMO-LUMO gaps are observed for all the (V2O5)n clusters. The HOMO-LUMO gaps of (V2O5)n, all exceeding that of the band gap of the bulk oxide, are found to increase with cluster size from n = 2-4. For the M4O10 clusters, we find that the Nb/Ta species yield similar spectra, both possessing lower electron affinities and larger HOMO-LUMO gaps relative to V4O10. The structures of the anionic and neutral clusters are optimized; the calculated electron binding energies and excitation spectra for the global minimum cage structures are in good agreement with the experiment. Evidence is also observed for the predicted trend of electron delocalization versus localization in the (V2O5)n(-) clusters. Further insights are provided pertaining to the potential chemical reactivities of the oxide clusters and properties of the bulk oxides.  相似文献   

15.
Mass spectrometry and photoelectron spectroscopy together with first principles theoretical calculations have been used to study the electronic and geometric properties of the following sodium-tin, cluster anion/neutral cluster combinations, (Na(n)Sn(4))(-)/(Na(n)Sn(4)), n = 0-4 and (NaSn(m))(-)/(NaSn(m)), m = 4-7. These synergistic studies found that specific Zintl anions, which are known to occur in condensed Zintl phases, also exist as stable moieties within free clusters. In particular, the cluster anion, (Na(3)Sn(4))(-) is very stable and is characterized as (Na(+))(3)(Sn(4))(-4); its moiety, (Sn(4))(-4) is a classic example of a Zintl anion. In addition, the cluster anion, (NaSn(5))(-) was the most abundant species to be observed in our mass spectrum, and it is characterized as Na(+)(Sn(5))(2-). Its moiety, (Sn(5))(2-) is also known to be present as a Zintl anion in condensed phases.  相似文献   

16.
We have identified and examined the excited state of the cluster-solvated, valence-bound acetonitrile anion dimer, consistent with recent experimental findings, determining that the cluster excited state is of predominantly single-excitation character. Potential energy surface scans in coordinates specific to a "dissociative" normal mode common between the excited and ground states of the valence anion as well as the ground-state neutral dimer species shed light on the proposed vibrational autodetachment mechanism, with calculated excited-state lifetime consistent with experiment.  相似文献   

17.
High energy photon is needed for photoelectron spectroscopy (PES) of anions with high electron binding energies, such as superhalogens and O-rich metal oxide clusters. The highest energy photon used for anion PES in the laboratory has been 157 nm (7.866 eV) from F2 eximer lasers. Here, we report an anion PES experiment using coherent vacuum ultraviolet radiation at 118.2 nm (10.488 eV) by tripling the third harmonic output (355 nm) of a Nd:YAG laser in a XeAr cell. Our study focuses on a set of superhalogen species, MCl(4) (-) (M=Sc, Y, La), which were expected to possess very high electron binding energies. While the 157 nm photon can only access the ground state detachment features for these species, more transitions to the excited states at binding energies higher than 8 eV are observed at 118.2 nm. The adiabatic detachment energies are shown to be, 6.84, 7.02, and 7.03 eV for ScCl(4) (-), YCl(4) (-), and LaCl(4) (-) eV, respectively, whereas their corresponding vertical detachment energies are measured to be 7.14, 7.31, and 7.38 eV.  相似文献   

18.
The (TiO2)n clusters and their anions for n = 1-4 have been studied with coupled cluster theory [CCSD(T)] and density functional theory (DFT). For n > 1, numerous conformations are located for both the neutral and anionic clusters, and their relative energies are calculated at both the DFT and CCSD(T) levels. The CCSD(T) energies are extrapolated to the complete basis set limit for the monomer and dimer and calculated up to the triple-zeta level for the trimer and tetramer. The adiabatic and vertical electron detachment energies of the anionic clusters to the ground and first excited states of the neutral clusters are calculated at both levels and compared with the experimental results. The comparison allows for the definitive assignment of the ground-state structures of the anionic clusters. Anions of the dimer and tetramer are found to have very closely lying conformations within 2 kcal/mol at the CCSD(T) level, whereas that of the trimer does not. In addition, accurate clustering energies and heats of formation are calculated for the neutral clusters and compared with the available experimental data. Estimates of the titanium-oxygen bond energies show that they are stronger than the group VIB transition metal-oxygen bonds except for tungsten. The atomization energies of these clusters display much stronger basis set dependence than the clustering energies. This allows the calculation of more accurate heats of formation for larger clusters on the basis of calculated clustering energies.  相似文献   

19.
The anion photoelectron spectra of Al5O4- and Al5O5H2- are presented and interpreted within the context of quantum chemical calculations on these species. Experimentally, the electron affinities of these two molecules are determined to be 3.50(5) eV and 3.10(10) eV for the bare and hydrated cluster, respectively. The spectra show at least three electronic transitions crowded into a 1 eV energy window. Calculations on Al5O4- predict a highly symmetric near-planar structure with a singlet ground state. The neutral structure calculated to be most structurally similar to the ground state structure of the anion is predicted to lie 0.15 eV above the ground state structure of the neutral. The lowest energy neutral isomer does not have significant Franck-Condon overlap with the ground state of the anion. Dissociative addition of water to Al5O4- is energetically favored over physisorption. The ground state structure for the Al5O4- +H(2)O product forms when water adds to the central Al atom in Al5O4- with -H migration to one of the neighboring O atoms. Again, the ground state structures for the anion and neutral are very different, and the PE spectrum represents transitions to a higher-lying neutral structure from the ground state anion structure.  相似文献   

20.
Calculations based on density functional theory (DFT) have been carried out to investigate the electronic and magnetic properties of the alpha-Keggin anions mentioned in the title. The atomic populations and the distribution of the electron density computed for the studied clusters support the hypothesis that an oxidized Keggin anion is an XO(4)(n-) clathrate inside a neutral M(12)O(36) cage. The energy gap between the band of occupied orbitals, formally delocalized over the oxo ligands, and the unoccupied d-metal orbitals, delocalized over the addenda, has been found to be independent of the central ion. However, substitution of a W or a Mo by V modifies the relative energy of the LUMO and then induces important changes in the redox properties of the cluster. In agreement with the most recent X-ray determination of [Co(III)W(12)O(40)](5-) and with the simplicity of the (183)W NMR and (17)O NMR spectra observed for this anion the calculations suggest that [Co(III)W(12)O(40)](5-) has a slightly distorted T(d ) geometry. For the parent cluster [CoW(12)O(40)](6-) the quadruplet corresponding to the anion encapsulating a Co(II) was found to be approximately 1 eV more stable than the species formed by a Co(III) and 1 e delocalized over the sphere of tungstens. The one-electron reduction of [Co(II)W(12)O(40)](6-) and [Fe(III)W(12)O(40)](5-) leads to the formation of the 1 e blue species [Co(II)W(12)O(40)](7-) and [Fe(III)W(12)O(40)](6-). The blue-iron cluster is considerably antiferromagnetic, and in full agreement with this behavior the low-spin state computed via a Broken Symmetry approach is 196 cm(-1) lower than the high-spin solution. In contrast, the cobalt blue anion has a low ferromagnetic coupling with an S-T energy gap of +20 cm(-1). This blue species is more stable than the alternative reduction product [Co(I)W(12)O(40)](7-) by more than 0.7 eV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号