首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Oxyfuel combustion is one of the promising carbon capture and storage (CCS) technologies for coal-fired boilers. In oxyfuel combustion, combustion gas is oxygen and recirculating flue gas (FGR) and main component of combustion gas is O2, CO2 and H2O rather than O2, N2 in air combustion. Fundamental researches showed that flame temperature and flame propagation velocity of pulverized cloud in oxyfuel combustion are lower than that in air with the same O2 concentration due to higher heat capacity of CO2. IHI pilot combustion test showed that stable burner combustion was obtained over 30% O2 in secondary combustion gas and the same furnace heat transfer as that of air firing at 27% O2 in overall combustion gas. Compared to emissions in air combustion, NOx emission per unit combustion energy decreased to 1/3 due to reducing NOx in the FGR, and SOx emission was 30% lower. However SOx concentration in the furnace for the oxyfuel mode was three to four times greater than for the air mode due to lower flow rate of exhaust gas. The higher SO3 concentration results that the sulphuric acid dew point increases 15–20 °C compared to the air combustion. These results confirmed the oxyfuel pulverized coal combustion is reliable and promising technology for coal firing power plant for CCS.In 2008, based on R&D and a feasibility study of commercial plants, the Callide Oxyfuel Project was started in order to demonstrate entire oxyfuel CCS power plant system for the first time in the world. The general scope and progress of the project are introduced here. Finally, challenges for present and next generation oxyfuel combustion power plant technologies are addressed.  相似文献   

2.
Coal splitting and staging is a promising technology to reduce nitrogen oxides (NOx) emissions from coal combustion through transforming nitrogenous pollutants into environmentally friendly gasses such as nitrogen (N2). During this process, the nitrogenous species in pyrolysis gas play a dominant role in NOx reduction. In this research, a series of reactive force field (ReaxFF) molecular dynamics (MD) simulations are conducted to investigate the fundamental reaction mechanisms of NO removal by nitrogen-containing species (HCN and NH3) in coal pyrolysis gas under various temperatures. The effects of temperature on the process and mechanisms of NO consumption and N2 formation are illustrated during NO reduction with HCN and NH3, respectively. Additionally, we compare the performance of NO reduction by HCN and NH3 and propose control strategies for the pyrolysis and reburn processes. The study provides new insights into the mechanisms of the NO reduction with nitrogen-containing species in coal pyrolysis gas, which may help optimize the operating parameters of the splitting and staging processes to decrease NOx emissions during coal combustion.  相似文献   

3.
Straw sample was torrefied at 260 °C and 300 °C in N2, respectively, to prepare torrefied straw named as T-260 and T-300, and the reduction effect of co-firing straw or torrefied straw and steam coal on PM1 is investigated. The combustion experiments were conducted in a high temperature drop tube furnace (DTF) at 1400 °C to collect the inorganic PM10 for further analysis. Combustion atmosphere was air for all cases and 50% O2/50% CO2 (OXY50) for coal, T-260 and their blends of 1:1 and 4:1. The results show that all three biomass fuels show obvious emission reduction of PM with aerodynamic diameters of ≤?0.3?µm (PM0.3) under both mix ratios. Reduction ratios of co-firing are overall higher at mix ratio of 1:1 than 4:1, and co-firing of T-260 or T-300 with coal shows higher reduction ratio than co-firing of straw. The higher ash content in torrefied straw leads to higher contents of alkali and alkaline earth metals (AAEM), which will further react with both Si and S during co-firing and coagulate into particles of larger sizes, leading to higher reduction ratios of PM0.3 and unconspicuous reduction effects in PM0.31 emitted from co-firing. During co-firing in oxyfuel atmosphere, a higher combustion temperature compared to air leads to an intensitive gasification, may resulting in effective and even higher reduction ratio in PM0.3.  相似文献   

4.
In the present paper Na3SO4Cl:Ce, Na3SO4Cl:Dy, Na3SO4Cl:Mn, of Na3SO4Cl:Ce, Dy and Na3SO4Cl:Ce, Mn phosphor were synthesized by the wet chemical method. Thermoluminescence (TL) characteristics of Na3SO4Cl:Ce, Na3SO4Cl:Dy, Na3SO4Cl:Mn, Na3SO4Cl:Ce, Dy and Na3SO4Cl:Ce, Mn phosphors were studied for 5 Gy γ-ray dose. In TL glow curve, two peaks have been observed at 129°C and 224°C for different concentrations of Ce and Dy, whereas Mn peaks at 212°C. The same host is also tried for Ce, Dy (peaks at 126, 219) and Ce, Mn (248°C). A significant single peak is observed in the case of Na3SO4Cl:Mn and Na3SO4Cl:Ce, Mn. This may be due to the effect of activators. It is found that intensity tends to be increase with increased concentrations of the activators. The TL glow curves of the phosphors have been recorded and irradiated at a rate of 0.39 kGy h?1 for 5 Gy γ-rays dose. It is also found that all the phosphors are less sensitive as compared with Thermoluminescence dosimetry-CaSO4: Dy for the same γ-rays dose. The paper discuses the preliminary TL characteristics and effect of γ-rays on Na3SO4Cl:Ce, Na3SO4Cl:Dy, Na3SO4Cl:Mn, Na3SO4Cl:Ce, Dy and Na3SO4Cl:Ce, Mn phosphors.  相似文献   

5.
Torrefaction is a competitive biomass pretreatment technology. However, its impacts on particulate matter (PM) formation during biomass combustion and co-combustion with coal have little been investigated. This work provides new data on the formation of PM10 (particulate matter with aerodynamic diameters less than or equal to 10 µm) from combustion of raw (RH), torrefied rice husk (TRH) and their blends with a lignite (SZ). All combustion experiments were carried out on a drop-tube furnace at 1300 °C and in air. The combustion-generated PM10 was collected by a Dekati low pressure impactor and classified into 14 size fractions for further quantification and characterization. The results indicate that, compared with the RH, the TRH-derived PM10+ (particle size above 10?µm) contains more alkalis, leading to a decrease in the production of PM1 (particle size below 1?µm). During co-combustion, fuel interactions promote the transformation of alkali chlorides to aluminosilicates. A considerable amount of water-soluble Ca and P in PM1 transforms to PM110 (particle size between 1–10?µm). As a result, the production of PM1 (on an ash basis) decreases while that of PM110 increases. Co-combustion of coal with torrefied rice husk is found to generate less PM1 but more PM110 than that with raw rice husk.  相似文献   

6.
This work concerns a parametric study of alkali release in a lab-scale, pulverized coal combustor (drop tube reactor) at atmospheric pressure. Measurements were made at steady reactor conditions using excimer laser fragmentation fluorescence (ELIF) and with direct optical access to the flue gas pipe. In this way, absolute gas-phase alkali species could be determined in situ, continuously, with sub-ppb sensitivity, directly in the flue gas. A hard coal was fired in the range 1000–1300 °C, for residence times in the range 3–5 s and for air numbers λ (air/fuel ratios) from 1.15 to 1.50. In addition, the amount of chlorine, water vapor and sulfur, respectively, was increased in known amounts by controlled dosing of HCl, H2O and SO2 into the combustion gas to determine effects of these components on release or capture of the alkali species. The experimental results are also compared with values calculated using ash/fuel analyses and sequential extraction to obtain a fuller picture of alkali release in pulverized fuel combustion.  相似文献   

7.
High-concentration H2S formed in the reduction zone of pulverized coal air-staged combustion can result into the high temperature corrosion of water wall tube of boiler, so it is of great importance to accurately predict H2S concentration for the safe operation of boilers and burners. H2S formation and evolution depends on two steps: the sulfur release from coal conversion and gas-phase reactions of sulfur species. In this study, the sulfur release characteristics from the pyrolysis of 17 coals, including 5 lignite, 9 bituminous coals and 3 anthracites, are investigated in a drop tube furnace (DTF). Sulfur release model is developed to describe the relationship between sulfur release and coal types. A global gas-phase reaction mechanism of sulfur species composed of ten reactions is used to calculate and predict the formation and evolution of H2S, COS and SO2 in the reduction zone of pulverized coal air-staged combustion. A wide range of air-staged combustion experiments of 17 coals are conducted in the DTF at different temperatures and stoichiometric ratios to validate the developed model. The results show that the prediction errors of sulfur species, including SO2, H2S and COS, are within ± 30%, which indicates that the developed prediction model of sulfur species is of great assistance for CFD modeling of actual engineering application.  相似文献   

8.
The formation of PM10 (particles less than or equal to 10 μm in aerodynamic diameter) during char combustion in both air-firing and oxy-firing was investigated. Three Chinese coals of different ranks (i.e., DT bituminous coal, CF lignite, and YQ anthracite) were devolatilized at 1300 °C in N2 and CO2 atmosphere, respectively, in a drop tube furnace (DTF). The resulting N2-chars and CO2-chars were burned at 1300 °C in both air-firing (O2/N2 = 21/79) and oxy-firing (O2/CO2 = 21/79). The effects of char properties and combustion conditions on PM10 formation during char combustion were studied. It was found that the formation modes and particle size distribution of PM10 from char combustion whether in air-firing or in oxy-firing were similar to those from pulverized coal combustion. The significant amounts of PM0.5 (particles less than or equal to 0.5 μm in aerodynamic diameter) generated from combustion of various chars suggested that the mineral matter left in the chars after coal devolatilization still had great contributions to the formation of ultrafine particles even during the char combustion stage. The concentration of PM10 from char combustion in oxy-firing was generally less than that in air-firing. The properties of the CO2-chars were different from those of the N2-chars, which was likely due to gasification reactions coal particles experienced during devolatilization in CO2 atmosphere. Regardless of the combustion modes, PM10 formation in combustion of N2-char and CO2-char from the same coal was found to be significantly dependent on char properties. The difference in the PM10 formation behavior between the N2-char and CO2-char was coal-type dependent.  相似文献   

9.
Es wurde im System NH4HSO3/SO2 die Abhängigkeit des Gesamttrennfaktors für die 31S-Anreicherung von der NH4HSO3-Konzentration und bei Temperaturen von 20 °C und 80 °C untersucht. Für den elementaren Trennfaktor wurde bei 20 °C eine Abhängigkeit von der NH4HSO3-Konzentration festgestellt, während er bei 80 °C für 3…10 Mol NH4HSO3/l ~ = 1,007 beträgt. Die Trennstufenhöhen lagen bei 20 °C zwischen 1,23 cm und 5,55 cm und bei 80 °C zwischen 0,93 cm und 2,12 cm.  相似文献   

10.
In the binary system (1?x)Li2SO4xNa2SO4, the solid–solid phase transitions and energy storage properties of Li2SO4, Na2SO4, the binary compound LiNaSO4 and two eutectoids (E1: 0.726Li2SO4–0.274Na2SO4; E2: 0.03Li2SO4–0.97Na2SO4) were investigated by X-ray diffraction and differential scanning calorimetry. Li2SO4 has a solid–solid phase transition at 578 °C with the transition enthalpy 252 J g?1. The binary compound LiNaSO4 gives a slightly lower enthalpy value, 214 J g?1 and its transition temperature is clearly reduced to 514 °C. The transition enthalpy of the eutectoid E1 is maintained to 177 J g?1 and its transition temperature is further reduced to 474 °C. Li2SO4, LiNaSO4 and the eutectoid E1 are applicable phase transition materials because of their large transition enthalpies. The enthalpies of Na2SO4 and the eutectoid E2 are not very high (~45 J g?1), but their transition temperatures are quite low (~250 °C); thus their transition properties may be applied at such low temperatures.  相似文献   

11.
The alumina content (more than 40%) of high-alumina coal ash is comparative to the middle content bauxite ores in China. So far, in order to meet the high demand of alumina and the rise of circular economy industrial chain, extracting alumina from coal ash has become a way to comprehensively utilize high-alumina coal ash. However, this process has high requirements on the crystal phase and stability of alumina. Different from most studies, this paper focuses on how to produce coal ash more beneficial to the later refining of aluminum. Therefore, the effects of combustion temperature and coal types by classifying high-alumina coal into dull coal and bright coal on alumina crystal phase formation were studied. Through proximate analysis, ultimate analysis, calorific value analysis, X-ray fluorescence spectroscopy, X-ray diffraction (XRD) and scanning electron microscope (SEM) and other methods, it is found that γ-Al2O3 in high-alumina coal ash translated into more stable θ-Al2O3 and finally α-Al2O3 when combustion temperature is higher than 1000°C. Thus compared with pulverized coal boilers, circulating fluidized bed (CFB) boilers with lower combustion temperature can produce higher quality coal ash. Moreover, at the same combustion temperature, alumina crystal phase in dull coal ash is relatively less stable than that in bright coal ash, which is more suitable to the later refining and electrolysis of aluminum.  相似文献   

12.
Careful axiswise measurements of d.c. conductivity and dielectric constants of (NH4)2SO4 from 50 to - 196°C establish two distinct phase transitions, instead of one, at temperatures -49.5 and -58°C which remain unchanged in (ND4)2SO4. Explanation based on successive distortions of non-equivalent (NH4)+ is offered. Low temperature transport process in the crystal also is discussed.  相似文献   

13.
Arsenic is easily evaporated during coal combustion, which not only raises serious environmental concerns but also results in the deactivation of catalyst in selective catalytic reduction (SCR) systems. It is a promising method to use sorbents for the capture of arsenic vapors (As2O3(g)) before As-containing flue gas entering SCR catalyst. However, arsenic has a strong affinity with sulfur in coal and SO2 in the coal combustion flue gas strongly suppresses As2O3(g) capture by typical Ca/Fe-based sorbents. This study estimated the selective capture of As2O3(g) by γ-Al2O3 and the effects of SO2 and NO on the arsenic adsorption were investigated. The results showed that As2O3(g) adsorption over γ-Al2O3 was effectively conducted at temperatures ranging from 300 to 400 °C. In the reacted γ-Al2O3, arsenic was predominantly in the form of As3+ through reactions with Al-O bonds and positive charged alumina ions. SO2 was slightly adsorbed on γ-Al2O3, which had a limited effect on arsenic adsorption. The adsorption of SO2 on γ-Al2O3 mainly occurred on the sites of hydroxyl groups (Al-OH) and few adsorbed SO2 was bound with positive charged alumina ions. NO was catalytically oxidized by γ-Al2O3 and released as NO2. Nevertheless, NO competed with As2O3(g) to adhere to positive charged alumina ions and strongly suppressed arsenic adsorption over γ-Al2O3. Fortunately, in the presence of SO2, NO was mostly transformed into intermediate (-SO3NO) at the sites of Al-OH on γ-Al2O3. As a result, the adverse effect of NO on the adsorption of As2O3(g) was weakened.  相似文献   

14.
An online thermogravimetric measurement method of ash deposition was developed. Ash deposition and slag bubble in the reductive zone of pulverized coal staged combustion were investigated. Firstly, a steady pulverized coal staged combustion was achieved in an electrically heated down-fired furnace. Additionally, gas species, coal conversion, and particle size distribution were quantitatively measured. Secondly, real-time ash deposition rates at different temperatures (1100–1400 °C) were measured, and deposition samples were carefully collected with an N2 protection method. The morphologies of collected samples were investigated through a scanning electron microscope. It was found that the deposited ash transformed from a porous layer composed of loosely bound particles to a solid layer formed by molten slag. Different behaviors of the slag bubble were observed, and bubble sizes were significantly affected by the deposition temperature. A deposition and bubble formation mechanism was proposed and used for modeling. Results showed that the proposed model well predicted the observed ash deposition and bubble formation process.  相似文献   

15.
Co-firing ammonia in coal units is a promising approach for the phasedown of coal power. In this paper, we demonstrate the feasibility of burning ammonia with coal and biomass in a 25- kW down-fired furnace with a swirl-stabilized burner. Ammonia is injected from the central tube at thermal ratios ranging from 0 to30% and can be completely burnt out in most co-firing cases. We investigate the NOx emission, unburnt carbon in fly ash, particulate matter formation and ash deposition behaviors when co-firing NH3 with either SH lignite coal or the coal/biomass blend. With a fixed air staging ratio, the NOx emission increases linearly with the NH3 fuel ratio. By increasing the percentage of secondary air, the emitted NOx can be reduced to 300 ppm with an NH3 thermal ratio of 30%. The unburnt carbon is affected by NH3 addition in a complex manner. With a 30% (thermal) NH3 addition, the unburnt carbon increases from 0.4% to 5.6% for the SH coal mainly due to a temperature drop, but decreases from 2.2% to 0.7% for the SH coal/biomass blend. As for the ash-related issues, the addition of NH3 to either coal or coal/biomass blend is found to alleviate both the fouling intensity and the ultrafine particulate matter formation ability. This is a major advantage over biomass combustion.  相似文献   

16.
Oxy-fuel combustion is one of the most promising technologies to isolate efficiently and economically CO2 emissions in coal combustion for the ready carbon sequestration. The high proportions of both H2O and CO2 in the furnace have complex impacts on flame characteristics (ignition, burnout, and heat transfer), pollutant emissions (NOx, SOx, and particulate matter), and operational concerns (ash deposition, fouling/slagging). In contrast to the existing literature, this review focuses on fundamental studies on both diagnostics and modelling aspects of bench- or lab-scale oxy-fuel combustion and, particularly, gives attention to the correlations among combustion characteristics, pollutant formation, and operational ash concerns. First, the influences of temperature and species concentrations (e.g., O2, H2O) on coal ignition, volatile combustion and char burning processes, for air- and oxy-firing, are comparatively evaluated and modelled, on the basis of data from optically-accessible set-ups including flat-flame burner, drop-tube furnace, and down-fired furnace. Then, the correlations of combustion-generated particulate/NOx emissions with changes of combustion characteristics in both air and oxy-fuel firing modes are summarized. Additionally, ash deposition propensity, as well as its relation to the formation of fine particulates (i.e. PM0.2, PM1 and PM10), for both modes are overviewed. Finally, future research topics are discussed. Fundamental oxy-fuel combustion research may provide an ideal alternative for validating CFD simulations toward industrial applications.  相似文献   

17.
A flow hydrothermal setup with a tubular reactor equipped with a plunger pump and back pressure valves is used to study the effects of scaling in the K2SO4-KCl-H2O, K2SO4-K2CO3-H2O, and Na2SO4-NaCl-H2O systems at pressures of up to 270–340 kg/cm2, temperatures of 400–600°C, and flow rates of 5.0 and 2.5 ml/min in order to establish conditions for the formation of salt plugs of type 2 (K2SO4, Na2SO4) in the flow mode at supercritical (SC) state parameters and to explore ways of eliminating such salt deposits by means of hydrothermal solvents, more specifically, high-temperature aqueous solutions of salts of type 1 (KCl, K2CO3, and NaCl). The concentrations of hydrothermal solvents sufficient to prevent the plugging of flow systems with solutions containing 0.26–0.27 mol % K2SO4 or Na2SO4 are determined, and the effects of the flow rate and chemical composition of type 1 salts on this process are studied. The results show that the phenomenon of scaling with the formation of salt plugs, which hinders the practical use of supercritical water oxidation technology, can be eliminated by adding readily soluble electrolytes, salts of type 1, to initial aqueous solution of type 2 salts.  相似文献   

18.
Single-crystal X-ray diffraction has been used to study the sublattice order parameters corresponding to the ordering of the two kinds of symmetrically independent ammonium ions in (NH4)2SO4. The diffraction data were collected on an automatic computer-controlled diffractometer using the 2θ-ω scan technique in the temperature range 22 to 130°C. The temperature dependence of the integrated intensities of Bragg reflections is well explained not by a pseudo-proper ferroelectric model, but by a ferrielectric one. It is concluded that (NH4)2SO4 undergoes a ferrielectric phase transition at about ?50°C.  相似文献   

19.
A three stage process consisting of mechanical milling, heat treatment, and washing has been investigated as a means of manufacturing nanoparticulate powders of In2O3. In the first stage of processing, mechanical milling was used to prepare a nanocrystalline mixture of In2(SO4)3, Na2CO3, and NaCl. Subsequent heat treatment of the milled reactant resulted in the formation of nanocrystalline In2O3 particles embedded within a matrix of Na2SO4 and NaCl. In the final stage of processing, the In2O3 powder was recovered by washing with deionised water. The duration of milling was found to determine the degree of hard agglomeration in the final washed powder. It was also found that the average particle size of the powder could be controlled between 8 and 18 nm by simply varying the temperature of the post-milling heat treatment over the range of 400 to 550°C. These results demonstrate that solid state chemical reaction can be used as a technically simple method for manufacturing nanoparticulate In2O3 powders with a controlled particle size and low levels of hard agglomeration.  相似文献   

20.
In this paper, thermoluminescence (TL) studies of BaCa(SO4)2:Eu,Dy phosphor are reported. A microcrystalline sample of BaCa(SO4)2:Eu,Dy was prepared by a solid state diffusion method and the formation of the compound was confirmed by the X-ray diffraction study. Morphology of the phosphor was analyzed by scanning electron microscopy (SEM). The sample is found to have an average particle size of 5?µm. TL glow curves of the γ-irradiated samples with different concentrations of Eu and Dy were studied and compared with BaCa(SO4)2:Eu and BaCa(SO4)2:Dy. It has been found that a single peak was located at around 230°C with the highest TL intensity in BaCa(SO4)2:Eu,Dy which is eight times and two times more than singly Dy- and Eu-doped BaCa(SO4)2 phosphor, respectively. For TL analysis, BaCa(SO4)2:Eu,Dy (0.2?mol%, 1?mol%) is annealed at different temperatures ranging from 900°C to 1100°C. Analysis of the TL glow curve was carried out by a glow curve deconvoluted method. Trapping parameters (activation energy and frequency factor) of all TL glow curves were evaluated by Chen's peak shape method. A comparison of trapping parameters between BaCa(SO4)2:Eu,Dy; BaCa(SO4)2:Eu and BaCa(SO4)2:Dy phosphors at 900°C, 1000°C and 1100°C is also reported in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号