首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Combustion dynamics leading to thermoacoustic instability in a rearward-facing step stabilized premixed flame is experimentally examined with the objective of investigating the fluid dynamic mechanism that drives heat release rate fluctuations, and how it couples with the acoustic field. The field is probed visually, using linear photodiode arrays that capture the spatiotemporal distribution of CH* and OH*; an equivalence ratio monitor; and a number of pressure sensors. Results show resonance between the acoustic quarter wave mode of the combustion tunnel and a fluid dynamic mode of the wake. Under unstable conditions, the flame is convoluted around a large vortex that extends several step heights downstream. During a typical cycle, while the velocity is decreasing, the vortex grows, and the flame extends downstream around its outer edge. As the velocity reaches its minimum, becoming mostly negative, the vortex reaches its maximum size, and the flame collides with the upper wall; its leading edge folds, trapping reactants pockets, and its trailing edge propagates far upstream of the step. In the next phase, while the velocity is increasing, the heat release grows rapidly as trapped reactant’ pockets are consumed by flames converging towards their centers, and the upstream flame is dislodged back downstream. The heat release rate reaches its maximum halfway into the velocity rise period, leading the maximum velocity by about 90°. In this quarter-wave mode, the pressure leads the velocity by 90° as well, that is, it is in phase with the heat release rate. Numerical modeling results support this mechanism. Equivalence ratio contribution to the instability mechanism is shown to be minor, i.e., heat release dynamics are governed by the cyclical formation of the wake vortex and its interaction with the flame.  相似文献   

2.
Large Eddy Simulations (LES) of kerosene spray combustion in an axial-swirl combustor have been carried out focusing on the effect of the evaporating droplets on the flame temperature and species concentrations. The LES-PDF methodology is used for both dispersed (liquid) and gas phases. The liquid phase is described using a Lagrangian formulation whilst an Eulerian approach is employed for the gas phase. The predictive capability of LES with sub-grid scale models for spray dispersion and evaporation is assessed placing emphasis on the effect of the unresolved velocity and temperature fields on the droplet evaporation rate. The results of the fully coupled LES formulation exhibit good agreement between the measured and simulated mean velocity fields. The global behaviour of the spray combustion, such as droplet dispersion and evaporation, are captured reasonably well in the simulations. It was found that the large velocity fluctuations observed in the shear layer strongly affect the evaporation rate and thus the temperature distributions. The present work also demonstrated the feasibility of LES to study complex flow features which are typical of gas-turbine combustion chambers.  相似文献   

3.
This study investigates the flame-flow interaction during a fully-premixed swirl flame flashback from flame-frame-of-reference. To capture the flame front movement during upstream propagation, high-speed chemiluminescence imaging and simultaneous three-component PIV measurements are taken at 4 kHz. The upstream propagation of the flame occurs along a helical path around the center-body. For low-turbulence and high-swirl conditions (Reh = 4000, Swirl number ~ 0.9), the lab-frame speed of the flame structure remains nearly constant during the period of investigation. Simultaneously, the leading side of the flame tongue retains its topology during propagation. The steady-state propagation behavior of the flame structure and stationarity of the flame topology allows us to make a frozen-flame-surface assumption. Applying space-time equivalence, the three-dimensional flame surface and flow field are reconstructed by shifting and stacking the time-series of the planar flame front profiles and the three-component planar velocity data. Further, the steady flow in the flame frame-of-reference provides a powerful means of investigating the flame-flow interaction. Quasi-pathlines are constructed in the unburnt and burnt regions of the flow field. The motion of the approach flow along a quasi-pathline is analyzed to understand the role of centrifugal and Coriolis forces. It is shown that the tug-of-war situation between Coriolis and centrifugal forces gets disrupted by the dilatation-driven blockage effect from the flame surface. It leads to a radial deflection of the approach flow, which results in reduction in the flame-normal approach flow speed, thereby assisting in the flame propagation. In the burnt gas, the Coriolis Effect bends the pathlines towards the center-body. We show - for the first time - that the azimuthal motion of the flame assists in the upstream propagation of the flame structure. Error assessment shows that the approximations made to construct the flame-surface and the flow-field retains the physics of flame-flow interactions.  相似文献   

4.
Injection of N2 through micro-jets located on the dump plane of a lean premixed swirl stabilized combustor is investigated as a new method for mitigating combustion instabilities. This study focuses on the chemical and fluid dynamic processes by which the N2 micro-jets impact the flame dynamics. An experimental and numerical investigation is performed to characterize the combustion instability during the V-to-M flame shape transition in a swirl burner fueled with premixed CH4/air, at an equivalence ratio of 0.62. Reasonable agreements have been found between the experimental measurements and simulation results. Both of them present that the flame changes from V-shape to M-shape periodically, and a low-frequency instability around 10 Hz is observed accordingly. It is confirmed that intermittent flame extinction in the outer recirculation zone (ORZ) is the source of the combustion instability. Furthermore, injection of N2 through micro-jets located on the combustor dump plane, into the outer recirculation zone, results in a stable V shape flame. It is clearly seen that the ORZ dilution can eliminate the combustion instability without inhibiting the combustion efficiency. A special focus is placed on the impact of the diluent injection on the local flame-flow interaction. The nitrogen micro-jets increase the local nitrogen concentration by 7% on average, lowering the flame speed and extinction strain rates by 27% and 17% respectively. Moreover, the micro-jets increase the turbulence intensity in the ORZ, leading to a significant increase in the Karlovitz number and transferring the local combustion regime from the thin reaction zone regime to the broken reaction zone regime. Hence, the nitrogen micro-jets impact on both the turbulence and the chemical reaction rates prevents flame propagation into the ORZ and results in a stable flame.  相似文献   

5.
A premixed and thermo-diffusively unstable turbulent hydrogen-air flame-in-a-box case is simulated in conjunction with the flame particle tracking (FPT) method. The flame is located in the flamelet regime. The focus lies on the assessment of memory effects in local flame dynamics. By tracking flame particles on an iso-surface of the flame during flame-turbulence interaction, the time history of flame speed and flame stretch can be recorded for each point on the flame iso-surface in a Lagrangian reference frame. The results reveal a time delay between the local flame speed and flame stretch signal, showing that previous values of flame stretch affect currently observed values of flame speed. Furthermore, by choosing flame particles whose trajectories are dominated by single frequencies, the time delay can be quantified. While plotting instantaneous values of flame speed and flame stretch results in a large scattering for turbulent flames, a quasi-linear correlation can be achieved by shifting the time signal of flame stretch according to the time delay. The time delay itself depends on the local flow time scale, which is expressed as a local Damköhler number. There is, however, an important difference between consumption and displacement speed. While most analyses in the literature are limited to the flame displacement speed, the flame consumption speed is evaluated for each flame particle in this work as well, which shows a strong correlation with the local equivalence ratio even at unsteady conditions. As the flame particles move toward regions with more negative flame stretch, the consumption speed decreases as the flame locally extinguishes. At the same time, the diffusive component of the displacement speed increases, as the tangential component of the diffusive flux increases in regions with strong negative flame curvature.  相似文献   

6.
The occurrence of self-excited pressure oscillations routinely plagues the development of combustion systems. These oscillations are often driven by interactions between the flame and acoustic perturbations. This study was performed to characterize the structure of the acoustic field in the near field of the flame and the manner in which it is influenced by oscillation frequency, combustor geometry, flame length and temperature ratio. The results of these calculations indicate that the acoustic velocity has primarily one- and two-dimensional features near the flame tip and base, respectively. The magnitude of the radial velocity components increases with temperature ratio across the flame, while their axial extent increases with frequency. However, the acoustic pressure has primarily one-dimensional characteristics. They also show that the acoustic field structure exhibits only moderate dependencies upon area expansion and flame temperature ratio for values typical of practical systems. Finally, they show that the local characteristics of the acoustic field, as well as the overall plane-wave reflection coefficient, exhibit a decreasing dependence upon the flame length as the area expansion ratio increases.  相似文献   

7.
Direct numerical simulations were conducted to investigate the effect of two parameters, density ratio and laminar flame speed, on the conditions of the onset of local extinction and blow-off of lean premixed flames, stabilized on a meso-scale bluff-body in hydrogen-air and syngas–air mixtures. A total of six simulation cases were considered as isolated comparison of the two parametric effects of the fluid dynamic instability and flame time scale. For all cases under study, the general flame development towards the blow-off limit showed a sequence of five distinct modes, with possible cyclic patterns among the different modes for a range of velocity conditions. The onset of local extinction was observed during the asymmetric vortex shedding and vortex street mode. As the density ratio is decreased, the flow inunder reviewstability is promoted through the increased sinuous mode, and such behavior was properly scaled by the Strouhal number. Although the blow-off velocity is altered by the fluid dynamic effects, the condition for the onset of local extinction and blow-off was mainly dictated by the competition between flow residence time associated with the lateral flame motion and ignition delay of the local mixtures. Time scale analysis supported the validity of the findings across all the cases investigated.  相似文献   

8.
A novel methodology is developed to decompose the classic Flame Transfer Function (FTF) used in the thermo-acoustic stability analysis of lean premix combustors into contributions of different types. The approach is applied, in the context of Large Eddy Simulation (LES), to partially-premixed and fully-premixed flames, which are stabilized via a central recirculation zone as a result of the vortex breakdown phenomenon. The first type of decomposition is into contributions driven by fuel mixture fraction and dynamic velocity fluctuations. Each of these two contributions is further split into the components of turbulent flame speed and flame surface area. The flame surface area component, driven by the pure dynamic velocity fluctuation, which is shown to be a dominant contribution to the overall FTF, is also additionally decomposed over the coherent flow structures using proper orthogonal decomposition. Using a simplified model for the dynamic response of premixed flames, it is shown that the distribution of the FTF, as obtained from LES, is closely related to the characteristics of the velocity field frequency response to the inlet perturbation. Initially, the proposed method is tested and validated with a well characterized laboratory burner geometry. Subsequently, the method is applied to an industrial gas turbine burner.  相似文献   

9.
The effect of CO2 dilution on the flame characteristics and pollutant emission of a partially premixed CH4-air flame in a confined bluff body and swirl influenced flowfield is investigated using optical and laser diagnostic methods. The non-premixed burner produced a converging-diverging flowfield at the burner exit and a lifted flame is produced at all test cases, with an upstream movement of the flame with decreasing global equivalence ratios (?g). Based on variations in ?g, two flame stabilization modes – bluff body influenced and swirl stabilized – with a transition mode in-between is observed for the cases with (flame FB) and without dilution (flame FM). The characteristics of the heat release zone are influenced by dilution, with the FB flames being longer and also less intense when compared to FM flames. Pollutant measurement at 30 mm downstream from the combustor exit highlighted the ultra-low NOx capability of the IIST-GS2 burner. CO2 dilution leads to a reduction in NOx emission due to both thermal and chemical effects. For ?g ≥ 0.7 extreme low levels of CO and unburned hydrocarbons (UHC) are observed for both cases. For ?g ≤ 0.6 the dramatic increase of both CO and UHC maybe due to the lower flame temperatures and shorter flame zone residence times, respectively.  相似文献   

10.
Numerical simulations were conducted to study the dynamics of premixed flames propagating in a closed tube by solving the fully compressible reactive Navier–Stokes equations using a high-order numerical method on a dynamically adapting grid. A simplified chemical-diffusive model was used to describe the reactions and energy release in a stoichiometric hydrogen-air mixture. The influence of wall boundary condition on the flame dynamics was explored by considering three different types of condition on the walls: adiabatic no-slip, adiabatic free-slip, and isothermal. The calculations show that the wall boundary condition has a significant effect on the generation and amplification of pressure waves and consequently on the flame dynamics. In the early stages of flame propagation, the flame behaves in a similar manner for different boundary conditions, that is, the flame develops a tulip shape that further evolves into a distorted tulip flame (DTF) through Rayleigh-Taylor instability arising from acoustic-flame interaction. Significant differences, however, arise after DTF formation in the late stages, especially when the primary acoustic wave is amplified to form a shock wave in the adiabatic free-slip and isothermal cases. The shock-flame interactions facilitate the formation of a series of increasingly corrugated flames by triggering the Richtmyer–Meshkov instabilities. The way how the lateral flame fronts touch the tube sidewalls to generate the primary acoustics and the heat conduction through the tube sidewalls play an important role in the generation and amplification of the pressure waves.  相似文献   

11.
This work presents a study of a magnesium/air combustion process in the context of innovative zero carbon dioxide (CO2) energy carriers for reducing global warming effects. In order to analyze more deeply the confined combustion of magnesium under fluctuating overpressure conditions (0 to 24 hPa) and the generated gaseous by-products, magnesium/air flames have been realized in a combustion chamber with a conical bluff-body as flame holder and different contraction ratios diaphragms at the exit duct. Sieved magnesium samples with two size-fractions were tested: 20–50?µm and 50–70?µm. The gaseous emissions of nitrogen oxides (NOx) and dioxygen (O2) were analyzed with on-line infrared, ultraviolet and paramagnetic analyzers. A flame pulsating behavior was clearly observed from light emission intensity (monitored by a photodiode) and pressure fluctuations (monitored by a pressure sensor); the frequencies obtained ranged between 3 and 10?Hz. The frequency of the pulsation exhibited strong dependence on the geometric configuration of the chamber: a contraction diaphragm divided by two the frequency level of the fluctuations in the studied range of maximum overpressure. Such fluctuations may probably be the consequence of periodic perturbations of the recirculation zone behind the bluff-body. These periodic perturbations are themselves caused by strong periodic overpressure variations due to stiff contraction downstream responding to gas velocity fluctuations. This feed-back-loop mechanism was considered in this study. NOx emissions produced through the thermal pathway were analyzed for equivalence ratios ranging from 0.29 to 1. The representation of NOx versus equivalence ratio exhibited a parabolic shape with a maximum for an equivalence ratio of 0.4. Moreover, NOx emissions of this metal combustor have shown a similar order of magnitude than current internal combustion engines.  相似文献   

12.
A piloted, partially premixed, liquid-fueled swirl burner is operated at high pressure (1 MPa). High-speed (6 KHz) stereoscopic PIV is used to investigate the characteristics of the stagnation line separating the pilot jet and the central recirculation zone (CRZ) with varying pilot-main ratio and global equivalence ratio. The mean curvature of the stagnation line displayed a large spatial scale pattern that was present for all operating conditions. All three components of velocity, in-plane shear, and swirling strength are conditioned upon the instantaneous stagnation line. Mean distributions of the velocity normal to the stagnation line show that velocity is oriented towards the CRZ when the stagnation line is found nearer the centerline of the combustor. The conditioned out-of-plane velocity (w) shows a distinct concentration of large mean and fluctuation RMS values towards the center of the measurement domain. Varying fuel flow does not significantly change this spatial structure, only the magnitudes of the w statistics. The in-plane shear stress was the largest for the pilot biased condition as a stronger shear layer develops. For the leanest flame, large fluctuation RMS values of shear stress were confined to a region where the pilot jet begins to interact more heavily with the main jet. Operating with less pilot fuel flow enhanced the mean conditional swirling strength indicating that the pilot shear layer was shedding more intense eddies. Disregarding spatial relations, a scatter plot of w, shear stress, and swirling strength displayed trends between the variables. The largest swirling strength values coincide with highest magnitude shear stresses and the widest range of w. These conditioned statistics highlight how certain aspects of the combustor flow field are invariant with fuel distribution. This is desirable for aeropropulsive combustors that must maintain stable ignition from a range of conditions from landing/take-off to cruise.  相似文献   

13.

Abstract  

Large eddy simulation was performed to visualize the three-dimensional vortical structures interacting with a turbulent premixed in a lean premixed swirl combustor with varied equivalence ratio. It was found that the fluctuation of unsteady heat release due to the deformation of flame surface was significantly decreased as the equivalence ratio increased because of the change in interaction between inner vortical structures and flames. This phenomenon was another evidence of the amplification mechanism in the combustion instabilities due to the strong flame–vortex interactions under lean premixed conditions.  相似文献   

14.
The interaction between a laminar flame and a vortex is an important study for understanding the fundamentals of turbulent combustion. In the past, however, flame-vortex interactions have been investigated only for high-temperature flames. In this study, the impact of a vortex on a premixed double flame, which consists of a coupled cool flame and a hot flame, is examined experimentally and computationally using dimethyl ether/oxygen/ozone mixtures. The double flame is first shown to occur near the extinction limit of the hot flame. The differences between steady-state cool flames, double flames, and hot flames are explored in a one-dimensional counterflow configuration. The transient interactions between double flames and impinging vortices are then investigated experimentally using a micro-jet and numerically in two-dimensional transient modeling. It is seen that the vortex can extinguish the near-limit hot flame locally, resulting in a lone cool flame. At higher vortex intensities, the cool flame may also be extinguished after the extinction of the hot flame. It is found that there can be three different transient flame structures coexisting at the same time: an extinguished flame hole, a cool flame, and a double flame. Moreover, flame curvature is shown to play an important role in determining whether the vortex weakens or strengthens the cool flame and double flame.  相似文献   

15.
A new turbulent, premixed, stagnation swirl flame (SSF) is used to synthesize titanium dioxide (TiO2) nanopowders. Synthesis conditions under two flame modes, i.e., burner- and substrate-stabilized SSF, are investigated, for the same equivalence ratio, but different inert-dilution ratios. The particles (collected on the substrate) have high anatase purity, with mean diameters of 5–10 nm, determined using BET and TEM, for all cases studied. For the same mean nanoparticle diameter synthesized, the SSF can accommodate higher precursor loading fluxes than that produced by others using laminar premixed stagnation flat flames. Particles in the flow field are determined to be non-agglomerated. For the particles deposited on the substrate, molecular dynamics simulations support the experimental results that sintering and growth of TiO2 nanoparticles do not occur on the substrate after the deposition, and the high anatase-phase purity is maintained.  相似文献   

16.
17.
Investigation results on unsteady flow dynamics in a gaseous jet flame with strong swirl, vortex breakdown, and precession of a vortex core obtained by panoramic optical methods are presented, as well as the results of theoretical analysis of the fastest growing modes of hydrodynamic instability. Characteristics of the most unstable self-oscillating mode in the initial region of the turbulent strongly swirling propane-air jet burning in the atmospheric air in the form of a lifted flame are determined. Analysis of data by principal component analysis and linear stability analysis revealed that evolution of the dominant self-oscillating mode corresponds to quasi-solid rotation with constant angular velocity of the spatial coherent structure consisting of a jet spiral vortex core and two spiral secondary vortices.  相似文献   

18.
There is a need to better understand particle size distributions (PSDs) from turbulent flames from a theoretical, practical and even regulatory perspective. Experiments were conducted on a sooting turbulent non-premixed swirled ethylene flame with secondary (dilution) air injection to investigate exhaust and in-burner PSDs measured with a Scanning Mobility Particle Sizer (SMPS) and soot volume fractions (fv) using extinction measurements. The focus was to understand the effect of systematically changing the amount and location of dilution air injection on the PSDs and fv inside the burner and at the exhaust. The PSDs were also compared with planar Laser Induced Incandescence (LII) calibrated against the average fv. LII provides some supplemental information on the relative soot amounts and spatial distribution among the various flow conditions that helps interpret the results. For the flame with no air dilution, fv drops gradually along the centreline of the burner towards the exhaust and the PSD shows a shift from larger particles to smaller. However, with dilution air fv reduces sharply where the dilution jets meet the burner axis. Downstream of the dilution jets fv reduces gradually and the PSDs remain unchanged until the exhaust. At the exhaust, the flame with no air dilution shows significantly more particles with an fv one to two orders of magnitude greater compared to the Cases with dilution. This dataset provides insights into soot spatial and particle size distributions within turbulent flames of relevance to gas turbine combustion with differing dilution parameters and the effect dilution has on the particle size. Additionally, this work measures fv using both ex situ and in situ techniques, and highlights the difficulties associated with comparing results across the two. The results are useful for validating advanced models for turbulent combustion.  相似文献   

19.
The zone conditional conservation equations are derived and validated against the DNS data of a freely propagating one-dimensional turbulent premixed flame. Conditional flow velocities are calculated by the conditional continuity and momentum equations, and a modeled transport equation for the Reynolds average reaction progress variable. An asymptotic formula for turbulent burning velocity is obtained with the effects of a finite Damköhler number accounted for as an additional factor. It is shown that flame generated turbulence is primarily due to correlations between fluctuating gas velocities and fluctuating unit normal vector on a flame surface. More investigation is required to validate general predictive capability of the derived conditional conservation equations and the relationships modeled for closure.  相似文献   

20.
The structure and dynamics of a turbulent partially premixed methane/air flame in a conical burner were investigated using laser diagnostics and large-eddy simulations (LES). The flame structure inside the cone was characterized in detail using LES based on a two-scalar flamelet model, with the mixture fraction for the mixing field and level-set G-function for the partially premixed flame front propagation. In addition, planar laser induced florescence (PLIF) of CH and chemiluminescence imaging with high speed video were performed through a glass cone. CH and CH2O PLIF were also used to examine the flame structures above the cone. It is shown that in the entire flame the CH layer remains very thin, whereas the CH2O layer is rather thick. The flame is stabilized inside the cone a short distance above the nozzle. The stabilization of the flame can be simulated by the triple-flame model but not the flamelet-quenching model. The results show that flame stabilization in the cone is a result of premixed flame front propagation and flow reversal near the wall of the cone which is deemed to be dependent on the cone angle. Flamelet based LES is shown to capture the measured CH structures whereas the predicted CH2O structure is somewhat thinner than the experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号