首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study shows how soot particles inside the cylinder of the engine are reduced due to high pressure fuel injection used in a light-duty single-cylinder optical diesel engine fuelled with methyl decanoate, a selected surrogate fuel for the diagnostics. For various injection pressures, planar laser induced incandescence (PLII) imaging and planar laser-induced fluorescence of hydroxyl (OH-PLIF) imaging were performed to understand the temporal and spatial development of soot and high-temperature flames. In addition, a thermophoresis-based particle sampling technique was used to obtain transmission electron microscope (TEM) images of soot aggregates and primary particles for detailed morphology analysis. The OH-PLIF images suggest that an increase in the injection pressure leads to wider distribution of high-temperature flames likely due to better mixing. The enhanced high-temperature reaction can promote soot formation evidenced by both a faster increase of LII signals and larger soot aggregates on the TEM images. However, the increased OH radicals at higher injection pressure accelerates the soot oxidation as shown in a higher decreasing rate of LII signals as well as dramatic reduction of the sampled soot aggregates at later crank angles. The analysis of nanoscale carbon layer fringe structures also shows a consistent trend that, at higher injection pressure, the soot particles are more oxidized to form more graphitic carbon layer structures. Therefore, it is concluded that the in-cylinder soot reduction at higher injection pressure conditions is due to enhanced soot oxidation despite increased soot formation.  相似文献   

2.
This study shows how the structure of soot particles within the flame changes due to the relative direction of the swirl flow in a small-bore diesel engine in which significant flame–wall interactions cause about half of the flame travelling against the swirl flow while the other half penetrating in the same direction. The thermophoresis-based particle sampling method was used to collect soot from three different in-flame locations including the flame–wall impingement point near the jet axis and the two 60° off-axis locations on the up-swirl and down-swirl side of the wall-interacting jet. The sampled soot particle images were obtained using transmission electron microscopes and the image post-processing was conducted for statistical analysis of size distribution of soot primary particles and aggregates, fractal dimension, and sub-nanoscale parameters such as the carbon layer fringe length, tortuosity, and spacing. The results show that the jet-wall impingement region is dominated by many small immature particles with amorphous internal structure, which is very different to large, fractal-like soot aggregates sampled from 60° downstream location on the down-swirl side. This structure variation suggests that the small immature particles underwent surface growth, coagulation and aggregation as they travelled along the piston-bowl wall. During this soot growth, the particle internal structure exhibits the transformation from amorphous carbon segments to a typical core–shell structure. Compared to those on the down-swirl side, the soot particles sampled on the up-swirl side show much lower number counts and more compact aggregates composed of highly concentrated primary particles. This soot aggregate structure, together with much narrower carbon layer gap, indicates higher level of soot oxidation on the up-swirl side of the jet.  相似文献   

3.
The requirement for heavy duty diesel engines to reduce the level of NOx emissions has resulted in higher soot loading of engine lubricants due to fuel injection retardation and exhaust gas re‐circulation. An improved understanding of the process of soot aggregation and aggregate morphology is therefore required to provide an insight into the consequences of soot‐laden lubricants. These include the effects of dispersant architecture and soot loading rate on aggregate morphology. A 2D and 3D study using a semi‐quantitative random walk based simulation model into the evolution of simulated fractal‐like colloidal aggregates has been carried out and applied to address these issues. The effects of variable soot loading rates, which are engine dependent, are reported. The role of different interaction forces which are, among other things, engine temperature and lubricant formulation dependent is explored. Differences between the simulations run under the same conditions but in different dimensions are highlighted and their implications discussed. The data indicate that a correlation can be established between inter‐particle forces (represented via a sticking probability) and both aggregate morphology (represented by fractal dimension) and aggregate dispersancy and the degree of dispersion of those aggregates (measured by the mean empty space parameter). Significantly, a strong relationship was found between soot‐loading rate and aggregate morphology, with higher loading rates leading to both a much lower fractal dimension and a higher degree of aggregate dispersion, which in turn would lead to a higher lubricant viscosity.  相似文献   

4.
The effect of multiple laser pulses reaching soot particles before an actual laser-induced incandescence (LII) measurement is investigated in order to gain some insights on soot morphological and fine structure changes due to rapid laser heating. Soot, extracted from a premixed and a quenched diffusion flames, is flowing through a tubular cell and undergoes a variable number of pulses at different fluence. The response of soot is studied by the two-color LII technique. Transmission electron microscopy (TEM) analysis of laser-modified soot aggregates from the diffusion flame is also presented. The results indicate that even at low laser fluences a permanent soot transformation is induced causing an increase in the absorption function E(m). This is interpreted as an induced graphitization of soot particles by the laser pulse heating. At high fluences the vaporization process and a profound restructuring of soot particles affect the morphology of the aggregates. Soot from diffusion and premixed flames behaves in a similar way although this similarity occurs at different fluence levels indicating a different initial fine structure of soot particles.  相似文献   

5.
The relative optical density (ROD) method provides a means to measure three-dimensional information about soot aggregates from two-dimensional transmission electron microscopy (TEM) micrographs of soot. The method is dependent on accurate calibration of the relationship between the measured soot ROD in TEM images and the actual soot thickness perpendicular to the imaging plane. A novel calibration method based on the comparison between probability distributions of measured soot ROD in TEM images and that of virtual soot thickness of numerically simulated soot is introduced. Soot aggregates of various prescribed fractal structure parameters were numerically generated using a tunable cluster-cluster aggregation model. The probability histograms of the local soot thickness for the simulated soot aggregates and ROD of the TEM images of flame generated soot aggregates were found to be quite similar and were used as a basis to establish a quantitative relationship between ROD and the local soot thickness. The calibration constant obtained from the analysis of the simulated soot was found to be insensitive to the fractal structure parameters over a wide range. The calibrated ROD method is successfully applied to the morphology analysis of soot aggregates generated in an atmospheric laminar co-flow ethylene-air diffusion flame based on thermophoretic sampling (TS) and TEM analysis techniques. With the ROD method, an overlap coefficient is introduced to identify and eliminate non-soot-aggregate structures and the selection of a cut-off overlap coefficient was found to have little influence on the final results over a relatively wide range. ROD is independent of empirical constants and human judgments and has been found to be an accurate and reliable TEM image analysis method for studying the morphology of soot aggregates.  相似文献   

6.
Soot aggregate formation and size distribution in a laminar ethylene/air coflow diffusion flame is modeled with a PAH-based soot model and an advanced sectional aerosol dynamics model. The mass range of solid soot phase is divided into 35 discrete sections and two variables are solved for in each section. The coagulation kernel of soot aggregates is calculated for the entire Knudsen number regime. Radiation from gaseous species and soot are calculated by a discrete-ordinate method with a statistical narrow-band correlated-k based band model. The discretized sectional soot equations are solved simultaneously to ensure convergence. Parallel computation with the domain decomposition method is used to save computational time. The flame temperature, soot volume fraction, primary particle size and number density are well reproduced. The number of primary particles per aggregate is overpredicted. This discrepancy is presumably associated with the unitary coagulation efficiency assumption in the current sectional model. Along the maximum soot volume fraction pathline, the number-based and mass-based aggregate size distribution functions are found to evolve from unimodal to bimodal and finally to unimodal again. The different shapes of these two aggregate size distribution functions indicate that the total number and mass of aggregates are dominated by aggregates of different sizes. The PAH-soot condensation efficiency γ is found to have a small effect on soot formation when γ is larger than 0.5. However, the soot level and primary particle number density are significantly overpredicted if the PAH-soot condensation process is neglected. Generally, larger γ predicts lower soot level and primary particle number density. Further study on soot aggregate coagulation efficiency should be pursued and more experimental data on soot aggregate structure and size distribution are needed for improving the current sectional soot model and for better understanding the complex soot aggregation phenomenon.  相似文献   

7.
This study presents the results of laser-induced incandescence (LII) measurements in an optically accessible gasoline direct injection engine. The focus was to evaluate LII as a particle measurement technique which is able to provide a deeper understanding of the underlying reaction and formation processes of soot in order to optimize the injection system to reduce exhaust gas emissions. A comparison of time-resolved LII, based on the model described by Michelsen, with an Engine Exhaust Particle Sizer (EEPS) was performed. In this context, the air–fuel ratio, the injection pressure and the injection timing have been varied while applying the measurement techniques in the exhaust system. In case of a variation of the air–fuel ratio, two-dimensional LII has been performed in the combustion chamber additionally. For each measurement, the Filter Smoke Number (FSN) was taken into account as well. Finally, a good agreement of the different techniques was achieved. Moreover, we found that by combining time-resolved LII and EEPS a differentiation of primary particles and agglomerates is possible. Consequently, a determination of the processes in the combustion chamber and agglomeration in the exhaust gas is feasible.  相似文献   

8.
The present work is focused on multi-dimensional simulations of combustion in diesel engines. The primary objective was to test, in a diesel engine framework, a soot particle size model to represent the carbon particle formation and calculate the corresponding size distribution function. Simulations are performed by means of a parallel version of the KIVA3V numerical code, modified to adopt detailed kinetics reaction mechanisms. A skeletal reaction scheme for n-heptane autoignition has been extended, to include PAH kinetics and carbonaceous particle formation and consumption rates: the full reaction set is made up of 82 gas species and 50 species accounting for the particles, thus the complete reaction scheme comprises 132 species and 2206 reaction steps. Four different engine operative conditions, varying engine speed and load, are taken into account and experimentally tested on a single cylinder diesel engine fuelling pure n-heptane. Computed particle size distribution functions are compared with corresponding measurements at the exhaust, performed by a differential mobility spectrometer.

A satisfying agreement between computed and measured combustion profiles is obtained in all the conditions.

A reasonable aerosol evolution can be obtained, yet in all the cases the model exhibits the tendency to overestimate the number of particles within the range 5–160 nm. Moreover calculations predict a nucleation mode not detected by the available instrument. According to the simulations, the total number and size of the nascent particles would not depend on the operative conditions, while the features of the larger aggregates distinctly vary with the engine functioning.  相似文献   

9.
Using the discrete dipole method, exact and approximate analytical solutions for orientation-averaged cross sections for extinction, absorption, and scattering of light are obtained. The analytical solutions can be applied to the calculation of integrated cross sections of fractal clusters formed by primary particles with different optical properties (soot in air and aqueous suspensions of aggregates of polystyrene, gold, and silver nanoparticles). It is shown that two models of aggregates that differ only in trajectories (ballistic or Brownian) of primary particles and intermediate clusters and in average fractal dimensions give close values of averaged extinction cross sections.  相似文献   

10.
基于分形理论,用计算机模拟了由球形基本粒子构成的煤烟聚集粒子。利用离散偶极子近似方法(Discrete Dipole Approximation)研究了煤烟聚集粒子的散射特性,讨论了分形煤烟聚集粒子的散射强度随煤烟聚集粒子的分形结构、大小、相对折射率及入射波波长变化情况。  相似文献   

11.
A late-injection strategy is typically adopted in stratified-charge direct injection spark ignition (DISI) engines to improve combustion stability for lean operation, but this may induce wall wetting on the piston surface and result in high soot emissions. E30 fuel, i.e., gasoline with 30% ethanol, is a potential alternative fuel that can offer a high Research Octane Number. However, the relatively high ethanol content increases the heat of vaporization, potentially exacerbating wall-wetting issues in DISI engines. In this study, the Refractive Index Matching (RIM) technique is used to measure fuel wall films in the piston bowl. The RIM implementation uses a novel LED illumination, integrated in the piston assembly and providing side illumination of the piston-bowl window. This RIM diagnostics in combination with high-speed imaging was used to investigate the impact of coolant temperature on the characteristics of wall wetting and combustion in an optical DISI engine fueled with E30. The experiments reveal that the smoke emissions increase drastically from 0.068 FSN to 1.14 FSN when the coolant temperature is reduced from 90 °C to 45 °C. Consistent with this finding, natural flame luminosity imaging reveals elevated soot incandescence with a reduction of the coolant temperature, indicative of pool fires. The RIM diagnostics show that a lower coolant temperature also leads to increased fuel film thickness, area, and volume, explaining the onset of pool fires and smoke.  相似文献   

12.
Soot particles formed in combustion processes commonly exist in the form of ensembles of randomly distributed aggregates of small, nearly spherical monomers. In this paper, these randomly distributed aggregates are numerically generated using a combination of the cluster–cluster aggregation algorithm with the Monte Carlo method. Moreover, an efficient and accurate numerical method is presented for characterizing the light scattering by these complex soot particles illuminated by plane wave and Gaussian beam. This method exploits the unique features of the hybrid finite element-boundary integral method and, more importantly, the unique features of soot aggregates. It is designed in such a manner that it first decomposes the original problem into many sub-regions, where each primary particle is regarded as a sub-region, and then it employs the edge-based finite element method to deal with each sub-region. The sub-regions communicate through the near-field Green’s function. To reduce computational burdens, an iterative domain decomposition method in combination with parallel conjugate gradient method is adopted to solve the coupling system of equations. As an illustration, we present some of our preliminary numerical results. The results are expected to provide useful insights into the optical properties of soot particles formed in combustion processes.  相似文献   

13.
A comprehensive two-dimensional multi-zone model of a diesel engine cycle is presented in this study, in order to examine the influence of insulating the combustion chamber on the performance and exhaust pollutants emissions of a naturally-aspirated, direct injection (DI), four-stroke, water-cooled diesel engine. The heat insulation is taken into account by the corresponding rise of wall temperature, since this is the final result of insulation useful for the study. It is found that there is no remarkable improvement of engine efficiency, since the decrease of volumetric efficiency has a greater influence on it than the decrease of heat loss to the coolant, which is converted mainly to exhaust gas enthalpy (significant rise of the exhaust gas temperature). As far as the concentration of exhaust pollutant emissions is concerned, it is found that the rising heat insulation leads to a significant increase of the exhaust nitric oxide (NO) and to a moderate increase of the exhaust soot concentration. Plots of temperature, equivalence ratio, NO and soot distributions at various instants of time inside the combustion chamber, emanating from the application of the multi-zone model, aid the correct interpretation of the insulation effects gaining insight into the underlying mechanisms involved.  相似文献   

14.
EGR率对生物柴油颗粒纳米结构的影响   总被引:1,自引:0,他引:1  
为研究同时运用废气再循环(EGR)技术和燃用生物柴油对柴油机排气颗粒纳米结构的影响,分别采集0%,15%,30% EGR率下186F柴油机燃用生物柴油时的排气颗粒,并用激光拉曼光谱仪测得颗粒光谱,使用五带法对一阶拉曼光谱进行拟合,分析拟合曲线参数,计算颗粒微晶尺寸和碳碳键长度。结果表明:EGR率为30%时,生物柴油颗粒光谱的半高宽(FWHM)最大,代表化学异相性最强并且颗粒中的物质种类最多,随着EGR率降低,半高宽逐渐减小;当EGR率从0%升高到30%,ID/IG逐渐增大,代表石墨化程度降低,颗粒中的石墨结构减少;同时,ID1/ID2从0% EGR率的8左右降低到15%和30% EGR率的4左右,代表EGR率升高,颗粒内部缺陷由空位缺陷向石墨烯边缘缺陷发展;随着EGR率升高,微晶尺寸逐渐减小,碳碳键长度基本不变。  相似文献   

15.
In direct-injection spark-ignition engines, fuel films formed on the piston surface due to impinging sprays are a major source of soot. Previous studies investigating the fuel films and their correlation to soot production were mostly performed in model experiments or optical engines. These experiments have different operating conditions compared to commercial engines. In this work, fuel films and soot are visualized in an all-metal engine with endoscopic access via laser-induced fluorescence (LIF) and natural incandescence, respectively. Gasoline and a mixture of isooctane/toluene were used as fuel for the experiments. The fuel films were excited by 266 nm laser pulses and visualized by an intensified CCD camera through a modular UV endoscope. Gasoline yielded much higher signal-to-noise ratio, and this fuel typically took an order of magnitude longer to evaporate than isooctane/toluene. The effects of injection time, injection pressure, engine temperature, and combustion on the fuel-film evaporation time were investigated. This film survival time was reduced with higher engine temperature, higher injection pressure, and later injection time, with engine temperature being the most significant parameter, whereas skip-fired combustion had very little effect on the film survival time. In complementary experiments, LIF from fuel films and soot incandescence were simultaneously visualized by an intensified double-frame CCD camera. At lower engine temperatures the fuel films remained distinct, and soot formation was limited to regions above the films, whereas at higher temperatures, fuel films, and hence the soot, appeared to be spread over the whole piston surface. Finally, high-speed imaging showed the spray, chemiluminescence, and soot incandescence, with results broadly consistent with fuel-film LIF and soot incandescence imaging.  相似文献   

16.
The thermophoretic sampling of particulates from hot media, coupled with transmission electron microscope (TEM) imaging, is a combined approach that is widely used to derive morphological information. The identification and the measurement of the particulates, however, can be complex when the TEM images are of low contrast, noisy, and have non-uniform background signal level. The image processing method can also be challenging and time consuming, when the samples collected have large variability in shape and size, or have some degree of overlapping. In this work, a three-stage image processing sequence is presented to facilitate time-efficient automated identification and measurement of particulates from the TEM grids. The proposed processing sequence is first applied to soot samples that were thermophoretically sampled from a laminar non-premixed ethylene-air flame. The parameter values that are required to be set to facilitate the automated process are identified, and sensitivity of the results to these parameters is assessed. The same analysis process is also applied to soot samples that were acquired from an externally irradiated laminar non-premixed ethylene-air flame, which have different geometrical characteristics, to assess the morphological dependence of the proposed image processing sequence. Using the optimized parameter values, statistical assessments of the automated results reveal that the largest discrepancies that are associated with the estimated values of primary particle diameter, fractal dimension, and prefactor values of the aggregates for the tested cases, are approximately 3, 1, and 10 %, respectively, when compared with the manual measurements.  相似文献   

17.
This study investigates the ability of Particulate Matter Index (PMI) to describe the sooting behavior of various gasoline formulations in a stratified-charge (SC) spark-ignition engine. The engine was operated at 2000 rpm with an intake pressure of 130 kPa where soot formation is known to primarily occur in the bulk gases. Exhaust soot emissions were measured for nine test fuels at various exhaust gas recirculation levels. A comparison between measured soot levels and PMI shows that PMI is a relatively poor predictor of the sooting tendency of the tested fuels under lean SC combustion. Among the fuels, three fuels, namely the di-isobutylene blend, High Olefin, and E30 fuels exhibit measured soot behavior opposite of that predicted by PMI. Optical diagnostics were utilized to further investigate the in-cylinder phenomena for these three fuels. Analysis of natural luminosity and diffused back-illumination extinction imaging suggests that fuel-induced differences in the amount of soot formed are responsible for a majority of the discrepancy in measured versus predicted sooting tendency. Fuel-induced differences in soot oxidation and spray development seem to play minor roles. Because the combustion and air-fuel mixing processes for lean SC combustion are different from conventional stoichiometric operation it is hypothesized that the PMI correlation needs to be modified to account for differences in stoichiometric air-fuel ratio and level of oxygenation between fuels. Furthermore, the role of fuel volatility in PMI possibly needs to be de-emphasized for SC operation with fuel injection into compression-heated gases.  相似文献   

18.
This study concerns the effect of soot-particle aggregation on the soot temperature derived from the signal ratio in two-color laser-induced incandescence measurements. The emissivity of aggregated fractal soot particles was calculated using both the commonly used Rayleigh–Debye–Gans fractal-aggregate theory and the generalized Mie-solution method in conjunction with numerically generated fractal aggregates of specified fractal parameters typical of flame-generated soot. The effect of aggregation on soot temperature was first evaluated for monodisperse aggregates of different sizes and for a lognormally distributed aggregate ensemble at given signal ratios between the two wavelengths. Numerical calculations were also conducted to account for the effect of aggregation on both laser heating and thermal emission at the two wavelengths for determining the effective soot temperature of polydisperse soot aggregates. The results show that the effect of aggregation on laser energy absorption is important at low fluences. The effect of aggregation on soot emissivity is relatively unimportant in LII applications to typical laminar diffusion flames at atmospheric pressure, but it can become more important in flames at high pressures due to larger primary particles and wider aggregate distributions associated with enhanced soot loading.  相似文献   

19.
Investigation of soot and ash particulate matter deposited in diesel particulate filters (DPFs) operating with biofuel (B100) and diesel (pure diesel: B0 and diesel80/biofuel20 blend: B20) by means of optical microscopy, scanning electron microscopy, and high resolution transmission electron microscopy (HRTEM) reveals the following: the rapeseed methyl ester biofuel used for this study contributes to ash production, mainly of Ca?CS?C and P-bearing compounds ranging in size between 50 and 300?nm. Smaller ash particles are less common and build aggregates. Ash is deposited on the inlet DPF surface, the inlet channel walls, and in B100-DPF at the plugged ends of inlet channels. The presence of Fe?CCr?CNi fragments, down to tens of nanometers in size within the ash is attributed to engine wear. Pt particles (50?C400?nm large) within the ash indicate that the diesel oxidation catalyst (DOC) upstream of the DPF shows aging effects. Radial cracks on the coating layer of the DOC confirm this assumption. The B100-DPF contains significantly less soot than B20 and B0. Based on the generally accepted view that soot reactivity correlates with the nanostructure of its primary particles, the length and curvature of graphene sheets from biofuel- and diesel-derived soot were measured and computed on the basis of HRTEM images. The results show that biofuel-derived soot can be more easily oxidized than diesel soot, not only during early formation but also during and after considerable particle growth. Differences in the graphene sheet separation distance, degree of crystalline order and size of primary soot particles between the two fuel types are in line with this inference.  相似文献   

20.
Laser‐induced incandescence (LII) is introduced as a valuable tool for the characterization of nanoparticles. This optical measurement technique is based on the heating of the particles by a short laser pulse and the subsequent detection of the thermal radiation. It has been applied successfully for the investigation of soot in different fields of application, which is described here in the form of an overview with a focus on work done at the LTT‐Erlangen during the last 10 years. In laboratory flames the soot primary particle size, volume concentration, and relative aggregate size have been determined in combination with the number density of primary particles. Furthermore, the primary particle sizes of carbon blacks have been measured in situ and online under laboratory conditions and also in production reactors. Measurements with different types of commercially available carbon black powders, which were dispersed in a measurement chamber yielded a good correlation between LII results and the specified product properties. Particle diameters determined by LII in a furnace black reactor correlate very well with the CTAB‐absorption number, which is a measure for the specific surface area. It turned out that the LII method is not affected by variations of the aggregate structure of the investigated carbon blacks. The LII signal also contains information on the primary particle size distribution, which can be reconstructed by the evaluation of the signal decay time at, at least, two different time intervals. Additionally, soot mass concentrations have been determined inside diesel engines and online measurements were performed in the exhaust gas of such engines for various engine conditions simultaneously providing information about primary particle size, soot volume, and number concentration. The LII results exhibit good correlation with traditional measurement techniques, e.g., filter smoke number measurements. In addition to the soot measurements, primarily tests with other nanoparticles like TiO2 or metal particles are encouraging regarding the applicability of the technique for the characterization of such different types of nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号